Peano systems.

main
Joshua Potter 2024-09-15 16:23:10 -06:00
parent 619b39e32c
commit 1e7eeb5604
11 changed files with 288 additions and 9 deletions

View File

@ -186,7 +186,14 @@
"infinity.png", "infinity.png",
"nan.png", "nan.png",
"triangular-gnomon.png", "triangular-gnomon.png",
"pascals-triangle.png" "pascals-triangle.png",
"function-bijective.png",
"function-injective.png",
"function-surjective.png",
"function-general.png",
"function-kernel.png",
"peano-system-i.png",
"peano-system-ii.png"
], ],
"File Hashes": { "File Hashes": {
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8", "algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
@ -326,7 +333,7 @@
"algebra/sequences/index.md": "208174a5a078b120fa11e296ad1d09c1", "algebra/sequences/index.md": "208174a5a078b120fa11e296ad1d09c1",
"_journal/2024-03-02.md": "08c3cae1df0079293b47e1e9556f1ce1", "_journal/2024-03-02.md": "08c3cae1df0079293b47e1e9556f1ce1",
"_journal/2024-03/2024-03-01.md": "70da812300f284df72718dd32fc39322", "_journal/2024-03/2024-03-01.md": "70da812300f284df72718dd32fc39322",
"algebra/sequences/triangular-numbers.md": "bf08ea7759b24defb7d5d3912cf04503", "algebra/sequences/triangular-numbers.md": "aafaf54e5aff9ca3c7354591fce9f833",
"algebra/sequences/square-numbers.md": "171f7c5a8dac088afba40923ab86c68e", "algebra/sequences/square-numbers.md": "171f7c5a8dac088afba40923ab86c68e",
"_journal/2024-03-03.md": "c4977a3778ed227b768c3f9ad5512670", "_journal/2024-03-03.md": "c4977a3778ed227b768c3f9ad5512670",
"_journal/2024-03/2024-03-02.md": "8136792b0ee6e08232e4f60c88d461d2", "_journal/2024-03/2024-03-02.md": "8136792b0ee6e08232e4f60c88d461d2",
@ -578,7 +585,7 @@
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e", "_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307", "_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728", "_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
"set/functions.md": "6716f8a32af73e5a4d1b2cbf6987b60f", "set/functions.md": "59e449d6756b57c846cdf07b0a1b4330",
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4", "_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307", "_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
"lambda-calculus/beta-reduction.md": "a8e2825c84e842ceef7aa638a493b91a", "lambda-calculus/beta-reduction.md": "a8e2825c84e842ceef7aa638a493b91a",
@ -738,7 +745,7 @@
"_journal/2024-08/2024-08-15.md": "7c3a96a25643b62b0064bf32cb17d92f", "_journal/2024-08/2024-08-15.md": "7c3a96a25643b62b0064bf32cb17d92f",
"_journal/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee", "_journal/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee",
"_journal/2024-08/2024-08-16.md": "da1127a1985074a3930b4c3512344025", "_journal/2024-08/2024-08-16.md": "da1127a1985074a3930b4c3512344025",
"set/order.md": "3bf63dd9c8ce6d2b4c6905dab0bd4aad", "set/order.md": "b69f922200514975b7a7028eef030b59",
"_journal/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5", "_journal/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
"ontology/philosophy/properties.md": "41b32249d3e4c23d73ddb3a417d65a4c", "ontology/philosophy/properties.md": "41b32249d3e4c23d73ddb3a417d65a4c",
"_journal/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65", "_journal/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
@ -755,7 +762,7 @@
"_journal/2024-08/2024-08-21.md": "1637b8ec8475cf3eb4f41d1d86cbf5df", "_journal/2024-08/2024-08-21.md": "1637b8ec8475cf3eb4f41d1d86cbf5df",
"_journal/2024-08/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571", "_journal/2024-08/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
"_journal/2024-08-23.md": "3b2feab2cc927e267263cb1e9c173d50", "_journal/2024-08-23.md": "3b2feab2cc927e267263cb1e9c173d50",
"set/natural-numbers.md": "f37647a51f457cb7d335e4e4fff227de", "set/natural-numbers.md": "bf73972ec1ca619ba0124169c25b1c39",
"_journal/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4", "_journal/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4",
"_journal/2024-08/2024-08-23.md": "7b5a40e83d8f07ff54cd9708017d029c", "_journal/2024-08/2024-08-23.md": "7b5a40e83d8f07ff54cd9708017d029c",
"_journal/2024-08/2024-08-22.md": "050235d5dc772b542773743b57ce3afe", "_journal/2024-08/2024-08-22.md": "050235d5dc772b542773743b57ce3afe",
@ -797,7 +804,12 @@
"_journal/2024-09/2024-09-10.md": "71a766783213f58552990b3ab1baeb50", "_journal/2024-09/2024-09-10.md": "71a766783213f58552990b3ab1baeb50",
"_journal/2024-09/2024-09-08.md": "0949eaf8df8d7e35cc0734d3a823921a", "_journal/2024-09/2024-09-08.md": "0949eaf8df8d7e35cc0734d3a823921a",
"_journal/2024-09/2024-09-07.md": "807e46a75e8b4b414141fb0c7d3f03e4", "_journal/2024-09/2024-09-07.md": "807e46a75e8b4b414141fb0c7d3f03e4",
"_journal/2024-09/2024-09-06.md": "7ea6a87f77cf49943eb76dd1052bd736" "_journal/2024-09/2024-09-06.md": "7ea6a87f77cf49943eb76dd1052bd736",
"_journal/2024-09-14.md": "774019f651e728faa288041ce4b265d3",
"_journal/2024-09/2024-09-13.md": "8c8f33fdd8242e5ab9adaa797dea7995",
"_journal/2024-09/2024-09-12.md": "30968fa3d73c005bdb4acc2025b34e11",
"_journal/2024-09-15.md": "a203f489d0205246b9b625354123046c",
"_journal/2024-09/2024-09-14.md": "1050e9ae0dfe4196a419105c43c2162f"
}, },
"fields_dict": { "fields_dict": {
"Basic": [ "Basic": [

View File

@ -0,0 +1,9 @@
---
title: "2024-09-15"
---
- [x] Anki Flashcards
- [x] KoL
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)

View File

@ -2,7 +2,7 @@
title: "2024-09-12" title: "2024-09-12"
--- ---
- [ ] Anki Flashcards - [x] Anki Flashcards
- [x] KoL - [x] KoL
- [x] OGS - [x] OGS
- [ ] Sheet Music (10 min.) - [ ] Sheet Music (10 min.)

View File

@ -0,0 +1,11 @@
---
title: "2024-09-13"
---
- [x] Anki Flashcards
- [x] KoL
- [ ] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Watched [Query Execution 1](https://www.youtube.com/watch?v=I0QdCSu06_o&list=PLSE8ODhjZXjaKScG3l0nuOiDTTqpfnWFf&index=13) and [Parallel Query Execution](https://www.youtube.com/watch?v=FG_wr-0QYg4&list=PLSE8ODhjZXjaKScG3l0nuOiDTTqpfnWFf&index=14).

View File

@ -0,0 +1,11 @@
---
title: "2024-09-14"
---
- [x] Anki Flashcards
- [x] KoL
- [x] OGS
- [ ] Sheet Music (10 min.)
- [ ] Korean (Read 1 Story)
* Notes on [[natural-numbers#Peano System|Peano systems]].

View File

@ -14,7 +14,7 @@ The $n$th term of the **triangular numbers** $(T_n)_{n \geq 0}$ is the sum of wh
%%ANKI %%ANKI
Basic Basic
What is a polygonal number? What is a polygonal number?
Back: A number of pebbles that can be arranged into the shape of a regular polygon. Back: A number of pebbles that can be arranged into the shape of a regular filled polygon.
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122). Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
<!--ID: 1709419325851--> <!--ID: 1709419325851-->
END%% END%%

View File

@ -1641,6 +1641,73 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1720819771087--> <!--ID: 1720819771087-->
END%% END%%
### Closures
If $S$ is a function and $A$ is a subset of $\mathop{\text{dom}}S$, then $A$ is said to be **closed** under $S$ if and only if whenever $x \in A$, then $S(x) \in A$. This is equivalently expressed as $S[\![A]\!] \subseteq A$.
%%ANKI
Basic
Let $A$ be closed under $S$. Then $A$ is a subset of what other set?
Back: $\mathop{\text{dom}}S$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726363069981-->
END%%
%%ANKI
Basic
Let $A$ be closed under $S$. With maximum specificity, what kind of mathematical object is $A$?
Back: A set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726363069988-->
END%%
%%ANKI
Basic
Let $A$ be closed under $S$. With maximum specificity, what kind of mathematical object is $S$?
Back: A function.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726363069991-->
END%%
%%ANKI
Basic
In FOL, what does it mean for set $A$ to be closed under function $S$?
Back: $\forall x \in A, S(x) \in A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726363069994-->
END%%
%%ANKI
Basic
What concept is being expressed in "$\forall x \in A, S(x) \in A$"?
Back: Set $A$ is closed under $S$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726363069997-->
END%%
%%ANKI
Basic
How can we more compactly express "$\forall x \in A, S(x) \in A$"?
Back: $S[\![A]\!] \subseteq A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726363070000-->
END%%
%%ANKI
Cloze
If $S[\![A]\!] \subseteq A$, then {1:$A$} is closed {2:under} {1:$S$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726363070010-->
END%%
%%ANKI
Basic
Suppose $A$ is closed under function $S$. What imagery does the term "closed" invoke?
Back: Applying a member of $A$ to $S$ always yields an element in $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726363070015-->
END%%
## Kernels ## Kernels
Let $F \colon A \rightarrow B$. Define [[relations#Equivalence Relations|equivalence relation]] $\sim$ as $$x \sim y \Leftrightarrow f(x) = f(y)$$ Let $F \colon A \rightarrow B$. Define [[relations#Equivalence Relations|equivalence relation]] $\sim$ as $$x \sim y \Leftrightarrow f(x) = f(y)$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

View File

@ -369,6 +369,175 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
<!--ID: 1724606314406--> <!--ID: 1724606314406-->
END%% END%%
## Peano System
A **Peano system** is a triple $\langle N, S, e \rangle$ consisting of a set $N$, a function $S \colon N \rightarrow N$, and a member $e \in N$ such that the following three conditions are met:
* $e \not\in \mathop{\text{ran}}{S}$;
* $S$ is one-to-one;
* Any subset $A$ of $N$ that contains $e$ and is closed under $S$ equals $N$ itself.
%%ANKI
Basic
A Peano system is a tuple consisting of how many members?
Back: $3$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667616-->
END%%
%%ANKI
Basic
Consider Peano system $\langle N, S, e \rangle$. With maximum specificity, what kind of mathematical object is $N$?
Back: A set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667620-->
END%%
%%ANKI
Basic
Consider Peano system $\langle N, S, e \rangle$. With maximum specificity, what kind of mathematical object is $S$?
Back: A function.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667623-->
END%%
%%ANKI
Basic
Consider Peano system $\langle N, S, e \rangle$. What is the domain of $S$?
Back: $N$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667626-->
END%%
%%ANKI
Basic
Consider Peano system $\langle N, S, e \rangle$. What is the codomain of $S$?
Back: $N$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667629-->
END%%
%%ANKI
Basic
Consider Peano system $\langle N, S, e \rangle$. With maximum specificity, what kind of mathematical object is $e$?
Back: A set or urelement.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667632-->
END%%
%%ANKI
Basic
In Peano system $\langle N, S, e \rangle$, $e$ is a member of what set?
Back: $N$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667635-->
END%%
%%ANKI
Basic
In Peano system $\langle N, S, e \rangle$, $e$ is explicitly *not* a member of what set?
Back: $\mathop{\text{ran}}S$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667639-->
END%%
%%ANKI
Cloze
Consider Peano system $\langle N, S, e \rangle$. Then {1:$e$} $\not\in$ {1:$\mathop{\text{ran} }S$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667643-->
END%%
%%ANKI
Basic
Consider Peano system $\langle N, S, e \rangle$. Function $S$ satisfies what additional condition?
Back: $S$ is one-to-one.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667648-->
END%%
%%ANKI
Basic
Consider Peano system $\langle N, S, e \rangle$. What two conditions must be satisfied for $A \subseteq N$ to coincide with $N$?
Back: $e \in A$ and $A$ is closed under $S$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667655-->
END%%
%%ANKI
Basic
What condition of Peano system $\langle N, S, e \rangle$ generalizes the induction principle of $\omega$?
Back: Any set $A \subseteq N$ containing $e$ and closed under $S$ coincides with $N$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667661-->
END%%
%%ANKI
Basic
What name is given to the condition of Peano systems involving closures?
Back: The Peano induction postulate.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667666-->
END%%
%%ANKI
Basic
The Peano induction postulate of $\langle N, S, e \rangle$ implies $N$ is the smallest set satisfying what?
Back: That contains $e$ and is closed under $S$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667670-->
END%%
%%ANKI
Basic
Let $\langle N, S, e \rangle$ be a Peano system. *Why* can't there be an $A \subset N$ containing $e$ and closed under $S$?
Back: The Peano induction postulate states $A$ *must* coincide with $N$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667673-->
END%%
%%ANKI
Basic
*Why* does Peano system $\langle N, S, e \rangle$ have condition $e \not\in \mathop{\text{ran}}S$?
Back: To avoid cycles in repeated applications of $S$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667676-->
END%%
%%ANKI
Basic
Which condition of Peano system $\langle N, S, e \rangle$ does the following depict?
![[peano-system-i.png]]
Back: $e \not\in \mathop{\text{ran}}S$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667679-->
END%%
%%ANKI
Basic
*Why* does Peano system $\langle N, S, e \rangle$ have condition "$S$ is one-to-one"?
Back: To avoid two members of $N$ mapping to the same element.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667682-->
END%%
%%ANKI
Basic
Which condition of Peano system $\langle N, S, e \rangle$ does the following depict?
![[peano-system-ii.png]]
Back: $S$ is one-to-one.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667685-->
END%%
%%ANKI
Basic
What is the Peano induction postulate?
Back: Given Peano system $\langle N, S, e \rangle$, a set $A \subseteq N$ containing $e$ and closed under $S$ coincides with $N$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1726364667688-->
END%%
## Bibliography ## Bibliography
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). * Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).

View File

@ -487,7 +487,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $R$? Consider an equivalence class of $x$ (modulo $R$). With maximum specificity, what kind of mathematical object is $R$?
Back: A relation. Back: A relation.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977). Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1721098094144--> <!--ID: 1721098094144-->