Peano systems.
parent
619b39e32c
commit
1e7eeb5604
|
@ -186,7 +186,14 @@
|
||||||
"infinity.png",
|
"infinity.png",
|
||||||
"nan.png",
|
"nan.png",
|
||||||
"triangular-gnomon.png",
|
"triangular-gnomon.png",
|
||||||
"pascals-triangle.png"
|
"pascals-triangle.png",
|
||||||
|
"function-bijective.png",
|
||||||
|
"function-injective.png",
|
||||||
|
"function-surjective.png",
|
||||||
|
"function-general.png",
|
||||||
|
"function-kernel.png",
|
||||||
|
"peano-system-i.png",
|
||||||
|
"peano-system-ii.png"
|
||||||
],
|
],
|
||||||
"File Hashes": {
|
"File Hashes": {
|
||||||
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
"algorithms/index.md": "3ac071354e55242919cc574eb43de6f8",
|
||||||
|
@ -326,7 +333,7 @@
|
||||||
"algebra/sequences/index.md": "208174a5a078b120fa11e296ad1d09c1",
|
"algebra/sequences/index.md": "208174a5a078b120fa11e296ad1d09c1",
|
||||||
"_journal/2024-03-02.md": "08c3cae1df0079293b47e1e9556f1ce1",
|
"_journal/2024-03-02.md": "08c3cae1df0079293b47e1e9556f1ce1",
|
||||||
"_journal/2024-03/2024-03-01.md": "70da812300f284df72718dd32fc39322",
|
"_journal/2024-03/2024-03-01.md": "70da812300f284df72718dd32fc39322",
|
||||||
"algebra/sequences/triangular-numbers.md": "bf08ea7759b24defb7d5d3912cf04503",
|
"algebra/sequences/triangular-numbers.md": "aafaf54e5aff9ca3c7354591fce9f833",
|
||||||
"algebra/sequences/square-numbers.md": "171f7c5a8dac088afba40923ab86c68e",
|
"algebra/sequences/square-numbers.md": "171f7c5a8dac088afba40923ab86c68e",
|
||||||
"_journal/2024-03-03.md": "c4977a3778ed227b768c3f9ad5512670",
|
"_journal/2024-03-03.md": "c4977a3778ed227b768c3f9ad5512670",
|
||||||
"_journal/2024-03/2024-03-02.md": "8136792b0ee6e08232e4f60c88d461d2",
|
"_journal/2024-03/2024-03-02.md": "8136792b0ee6e08232e4f60c88d461d2",
|
||||||
|
@ -578,7 +585,7 @@
|
||||||
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
"_journal/2024-06/2024-06-12.md": "f82dfa74d0def8c3179d3d076f94558e",
|
||||||
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
"_journal/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||||
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
"_journal/2024-06/2024-06-13.md": "e2722a00585d94794a089e8035e05728",
|
||||||
"set/functions.md": "6716f8a32af73e5a4d1b2cbf6987b60f",
|
"set/functions.md": "59e449d6756b57c846cdf07b0a1b4330",
|
||||||
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
"_journal/2024-06-15.md": "92cb8dc5c98e10832fb70c0e3ab3cec4",
|
||||||
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
"_journal/2024-06/2024-06-14.md": "5d12bc272238ac985a1d35d3d63ea307",
|
||||||
"lambda-calculus/beta-reduction.md": "a8e2825c84e842ceef7aa638a493b91a",
|
"lambda-calculus/beta-reduction.md": "a8e2825c84e842ceef7aa638a493b91a",
|
||||||
|
@ -738,7 +745,7 @@
|
||||||
"_journal/2024-08/2024-08-15.md": "7c3a96a25643b62b0064bf32cb17d92f",
|
"_journal/2024-08/2024-08-15.md": "7c3a96a25643b62b0064bf32cb17d92f",
|
||||||
"_journal/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee",
|
"_journal/2024-08-17.md": "b06a551560c377f61a1b39286cd43cee",
|
||||||
"_journal/2024-08/2024-08-16.md": "da1127a1985074a3930b4c3512344025",
|
"_journal/2024-08/2024-08-16.md": "da1127a1985074a3930b4c3512344025",
|
||||||
"set/order.md": "3bf63dd9c8ce6d2b4c6905dab0bd4aad",
|
"set/order.md": "b69f922200514975b7a7028eef030b59",
|
||||||
"_journal/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
|
"_journal/2024-08-18.md": "6f8aec69e00401b611db2a377a3aace5",
|
||||||
"ontology/philosophy/properties.md": "41b32249d3e4c23d73ddb3a417d65a4c",
|
"ontology/philosophy/properties.md": "41b32249d3e4c23d73ddb3a417d65a4c",
|
||||||
"_journal/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
|
"_journal/2024-08-19.md": "94836e52ec04a72d3e1dbf3854208f65",
|
||||||
|
@ -755,7 +762,7 @@
|
||||||
"_journal/2024-08/2024-08-21.md": "1637b8ec8475cf3eb4f41d1d86cbf5df",
|
"_journal/2024-08/2024-08-21.md": "1637b8ec8475cf3eb4f41d1d86cbf5df",
|
||||||
"_journal/2024-08/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
|
"_journal/2024-08/2024-08-20.md": "e8bec308d1b29e411c6799ace7ef6571",
|
||||||
"_journal/2024-08-23.md": "3b2feab2cc927e267263cb1e9c173d50",
|
"_journal/2024-08-23.md": "3b2feab2cc927e267263cb1e9c173d50",
|
||||||
"set/natural-numbers.md": "f37647a51f457cb7d335e4e4fff227de",
|
"set/natural-numbers.md": "bf73972ec1ca619ba0124169c25b1c39",
|
||||||
"_journal/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4",
|
"_journal/2024-08-24.md": "563fad24740e44734a87d7c3ec46cec4",
|
||||||
"_journal/2024-08/2024-08-23.md": "7b5a40e83d8f07ff54cd9708017d029c",
|
"_journal/2024-08/2024-08-23.md": "7b5a40e83d8f07ff54cd9708017d029c",
|
||||||
"_journal/2024-08/2024-08-22.md": "050235d5dc772b542773743b57ce3afe",
|
"_journal/2024-08/2024-08-22.md": "050235d5dc772b542773743b57ce3afe",
|
||||||
|
@ -797,7 +804,12 @@
|
||||||
"_journal/2024-09/2024-09-10.md": "71a766783213f58552990b3ab1baeb50",
|
"_journal/2024-09/2024-09-10.md": "71a766783213f58552990b3ab1baeb50",
|
||||||
"_journal/2024-09/2024-09-08.md": "0949eaf8df8d7e35cc0734d3a823921a",
|
"_journal/2024-09/2024-09-08.md": "0949eaf8df8d7e35cc0734d3a823921a",
|
||||||
"_journal/2024-09/2024-09-07.md": "807e46a75e8b4b414141fb0c7d3f03e4",
|
"_journal/2024-09/2024-09-07.md": "807e46a75e8b4b414141fb0c7d3f03e4",
|
||||||
"_journal/2024-09/2024-09-06.md": "7ea6a87f77cf49943eb76dd1052bd736"
|
"_journal/2024-09/2024-09-06.md": "7ea6a87f77cf49943eb76dd1052bd736",
|
||||||
|
"_journal/2024-09-14.md": "774019f651e728faa288041ce4b265d3",
|
||||||
|
"_journal/2024-09/2024-09-13.md": "8c8f33fdd8242e5ab9adaa797dea7995",
|
||||||
|
"_journal/2024-09/2024-09-12.md": "30968fa3d73c005bdb4acc2025b34e11",
|
||||||
|
"_journal/2024-09-15.md": "a203f489d0205246b9b625354123046c",
|
||||||
|
"_journal/2024-09/2024-09-14.md": "1050e9ae0dfe4196a419105c43c2162f"
|
||||||
},
|
},
|
||||||
"fields_dict": {
|
"fields_dict": {
|
||||||
"Basic": [
|
"Basic": [
|
||||||
|
|
|
@ -0,0 +1,9 @@
|
||||||
|
---
|
||||||
|
title: "2024-09-15"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [x] OGS
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
|
@ -2,7 +2,7 @@
|
||||||
title: "2024-09-12"
|
title: "2024-09-12"
|
||||||
---
|
---
|
||||||
|
|
||||||
- [ ] Anki Flashcards
|
- [x] Anki Flashcards
|
||||||
- [x] KoL
|
- [x] KoL
|
||||||
- [x] OGS
|
- [x] OGS
|
||||||
- [ ] Sheet Music (10 min.)
|
- [ ] Sheet Music (10 min.)
|
|
@ -0,0 +1,11 @@
|
||||||
|
---
|
||||||
|
title: "2024-09-13"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [ ] OGS
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
||||||
|
|
||||||
|
* Watched [Query Execution 1](https://www.youtube.com/watch?v=I0QdCSu06_o&list=PLSE8ODhjZXjaKScG3l0nuOiDTTqpfnWFf&index=13) and [Parallel Query Execution](https://www.youtube.com/watch?v=FG_wr-0QYg4&list=PLSE8ODhjZXjaKScG3l0nuOiDTTqpfnWFf&index=14).
|
|
@ -0,0 +1,11 @@
|
||||||
|
---
|
||||||
|
title: "2024-09-14"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [x] OGS
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
||||||
|
|
||||||
|
* Notes on [[natural-numbers#Peano System|Peano systems]].
|
|
@ -14,7 +14,7 @@ The $n$th term of the **triangular numbers** $(T_n)_{n \geq 0}$ is the sum of wh
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What is a polygonal number?
|
What is a polygonal number?
|
||||||
Back: A number of pebbles that can be arranged into the shape of a regular polygon.
|
Back: A number of pebbles that can be arranged into the shape of a regular filled polygon.
|
||||||
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
Reference: “Triangular Number,” in _Wikipedia_, January 13, 2024, [https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122](https://en.wikipedia.org/w/index.php?title=Triangular_number&oldid=1195279122).
|
||||||
<!--ID: 1709419325851-->
|
<!--ID: 1709419325851-->
|
||||||
END%%
|
END%%
|
||||||
|
|
|
@ -1641,6 +1641,73 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1720819771087-->
|
<!--ID: 1720819771087-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
### Closures
|
||||||
|
|
||||||
|
If $S$ is a function and $A$ is a subset of $\mathop{\text{dom}}S$, then $A$ is said to be **closed** under $S$ if and only if whenever $x \in A$, then $S(x) \in A$. This is equivalently expressed as $S[\![A]\!] \subseteq A$.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $A$ be closed under $S$. Then $A$ is a subset of what other set?
|
||||||
|
Back: $\mathop{\text{dom}}S$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726363069981-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $A$ be closed under $S$. With maximum specificity, what kind of mathematical object is $A$?
|
||||||
|
Back: A set.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726363069988-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $A$ be closed under $S$. With maximum specificity, what kind of mathematical object is $S$?
|
||||||
|
Back: A function.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726363069991-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
In FOL, what does it mean for set $A$ to be closed under function $S$?
|
||||||
|
Back: $\forall x \in A, S(x) \in A$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726363069994-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What concept is being expressed in "$\forall x \in A, S(x) \in A$"?
|
||||||
|
Back: Set $A$ is closed under $S$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726363069997-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
How can we more compactly express "$\forall x \in A, S(x) \in A$"?
|
||||||
|
Back: $S[\![A]\!] \subseteq A$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726363070000-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
If $S[\![A]\!] \subseteq A$, then {1:$A$} is closed {2:under} {1:$S$}.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726363070010-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Suppose $A$ is closed under function $S$. What imagery does the term "closed" invoke?
|
||||||
|
Back: Applying a member of $A$ to $S$ always yields an element in $A$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726363070015-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Kernels
|
## Kernels
|
||||||
|
|
||||||
Let $F \colon A \rightarrow B$. Define [[relations#Equivalence Relations|equivalence relation]] $\sim$ as $$x \sim y \Leftrightarrow f(x) = f(y)$$
|
Let $F \colon A \rightarrow B$. Define [[relations#Equivalence Relations|equivalence relation]] $\sim$ as $$x \sim y \Leftrightarrow f(x) = f(y)$$
|
||||||
|
|
Binary file not shown.
After Width: | Height: | Size: 17 KiB |
Binary file not shown.
After Width: | Height: | Size: 18 KiB |
|
@ -369,6 +369,175 @@ Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Pre
|
||||||
<!--ID: 1724606314406-->
|
<!--ID: 1724606314406-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
|
## Peano System
|
||||||
|
|
||||||
|
A **Peano system** is a triple $\langle N, S, e \rangle$ consisting of a set $N$, a function $S \colon N \rightarrow N$, and a member $e \in N$ such that the following three conditions are met:
|
||||||
|
|
||||||
|
* $e \not\in \mathop{\text{ran}}{S}$;
|
||||||
|
* $S$ is one-to-one;
|
||||||
|
* Any subset $A$ of $N$ that contains $e$ and is closed under $S$ equals $N$ itself.
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
A Peano system is a tuple consisting of how many members?
|
||||||
|
Back: $3$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667616-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider Peano system $\langle N, S, e \rangle$. With maximum specificity, what kind of mathematical object is $N$?
|
||||||
|
Back: A set.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667620-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider Peano system $\langle N, S, e \rangle$. With maximum specificity, what kind of mathematical object is $S$?
|
||||||
|
Back: A function.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667623-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider Peano system $\langle N, S, e \rangle$. What is the domain of $S$?
|
||||||
|
Back: $N$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667626-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider Peano system $\langle N, S, e \rangle$. What is the codomain of $S$?
|
||||||
|
Back: $N$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667629-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider Peano system $\langle N, S, e \rangle$. With maximum specificity, what kind of mathematical object is $e$?
|
||||||
|
Back: A set or urelement.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667632-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
In Peano system $\langle N, S, e \rangle$, $e$ is a member of what set?
|
||||||
|
Back: $N$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667635-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
In Peano system $\langle N, S, e \rangle$, $e$ is explicitly *not* a member of what set?
|
||||||
|
Back: $\mathop{\text{ran}}S$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667639-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Cloze
|
||||||
|
Consider Peano system $\langle N, S, e \rangle$. Then {1:$e$} $\not\in$ {1:$\mathop{\text{ran} }S$}.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667643-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider Peano system $\langle N, S, e \rangle$. Function $S$ satisfies what additional condition?
|
||||||
|
Back: $S$ is one-to-one.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667648-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Consider Peano system $\langle N, S, e \rangle$. What two conditions must be satisfied for $A \subseteq N$ to coincide with $N$?
|
||||||
|
Back: $e \in A$ and $A$ is closed under $S$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667655-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What condition of Peano system $\langle N, S, e \rangle$ generalizes the induction principle of $\omega$?
|
||||||
|
Back: Any set $A \subseteq N$ containing $e$ and closed under $S$ coincides with $N$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667661-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What name is given to the condition of Peano systems involving closures?
|
||||||
|
Back: The Peano induction postulate.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667666-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
The Peano induction postulate of $\langle N, S, e \rangle$ implies $N$ is the smallest set satisfying what?
|
||||||
|
Back: That contains $e$ and is closed under $S$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667670-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Let $\langle N, S, e \rangle$ be a Peano system. *Why* can't there be an $A \subset N$ containing $e$ and closed under $S$?
|
||||||
|
Back: The Peano induction postulate states $A$ *must* coincide with $N$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667673-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* does Peano system $\langle N, S, e \rangle$ have condition $e \not\in \mathop{\text{ran}}S$?
|
||||||
|
Back: To avoid cycles in repeated applications of $S$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667676-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which condition of Peano system $\langle N, S, e \rangle$ does the following depict?
|
||||||
|
![[peano-system-i.png]]
|
||||||
|
Back: $e \not\in \mathop{\text{ran}}S$
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667679-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
*Why* does Peano system $\langle N, S, e \rangle$ have condition "$S$ is one-to-one"?
|
||||||
|
Back: To avoid two members of $N$ mapping to the same element.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667682-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
Which condition of Peano system $\langle N, S, e \rangle$ does the following depict?
|
||||||
|
![[peano-system-ii.png]]
|
||||||
|
Back: $S$ is one-to-one.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667685-->
|
||||||
|
END%%
|
||||||
|
|
||||||
|
%%ANKI
|
||||||
|
Basic
|
||||||
|
What is the Peano induction postulate?
|
||||||
|
Back: Given Peano system $\langle N, S, e \rangle$, a set $A \subseteq N$ containing $e$ and closed under $S$ coincides with $N$.
|
||||||
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
|
<!--ID: 1726364667688-->
|
||||||
|
END%%
|
||||||
|
|
||||||
## Bibliography
|
## Bibliography
|
||||||
|
|
||||||
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
* Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
|
@ -487,7 +487,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Consider an equivalence class of $x$ (modulo $R$). What kind of mathematical object is $R$?
|
Consider an equivalence class of $x$ (modulo $R$). With maximum specificity, what kind of mathematical object is $R$?
|
||||||
Back: A relation.
|
Back: A relation.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1721098094144-->
|
<!--ID: 1721098094144-->
|
||||||
|
|
Loading…
Reference in New Issue