Extension and truncation of integer-encoded binary.
parent
92e691e937
commit
15001806d0
|
@ -171,7 +171,7 @@
|
|||
"algorithms/binary-search.md": "08cb6dc2dfb204a665d8e8333def20ca",
|
||||
"_journal/2024-02-17.md": "7c37cb10515ed3d2f5388eaf02a67048",
|
||||
"_journal/2024-02/2024-02-16.md": "e701902e369ec53098fc2deed4ec14fd",
|
||||
"binary/integer-encoding.md": "95571264710f244da40c8203ad1de993",
|
||||
"binary/integer-encoding.md": "ed39771ee9de86423f75fda74b8c5aa2",
|
||||
"combinatorics/index.md": "f9de9671fdb6068ef2bb5e63051734be",
|
||||
"_journal/2024-02-18.md": "67e36dbbb2cac699d4533b5a2eaeb629",
|
||||
"_journal/2024-02/2024-02-17.md": "7c37cb10515ed3d2f5388eaf02a67048",
|
||||
|
@ -194,7 +194,7 @@
|
|||
"c17/strings.md": "bbe8983602adbeb38eff214beddedd84",
|
||||
"c17/index.md": "78576ee41d0185df82c59999142f4edb",
|
||||
"c17/escape-sequences.md": "ebc63c6cdfbe60bbc2708c1b0c8da8bb",
|
||||
"c17/declarations.md": "d8920390eae79da5d9be08d050ca1b51"
|
||||
"c17/declarations.md": "46b135d583a992991c889d518fec1c0f"
|
||||
},
|
||||
"fields_dict": {
|
||||
"Basic": [
|
||||
|
|
|
@ -750,6 +750,94 @@ END%%
|
|||
|
||||
### Truncation
|
||||
|
||||
Let $$\begin{align*}
|
||||
x & = \langle x_{w-1}, \ldots, x_1, x_0 \rangle \\
|
||||
x' & = \langle x_{k-1}, \ldots, x_1, x_0 \rangle
|
||||
\end{align*}$$
|
||||
|
||||
Then in unsigned encoding, truncating $x$ to $k$ bits is equal to $x \bmod 2^k$. This is because $x_i \bmod 2^k = 0$ for all $i \geq k$ meaning $$B2U_k(x') = B2U_w(x) \bmod 2^k$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What bit string results from truncating $\langle x_{w-1}, \ldots, x_1, x_0 \rangle$ to $k$ bits?
|
||||
Back: $\langle x_{k-1}, \ldots, x_1, x_0 \rangle$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1708700130849-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the decimal value of truncating unsigned $x$ to $k$ bits?
|
||||
Back: $x \bmod 2^k$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1708700130856-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
*Why* does truncating unsigned $x$ to $k$ bits yield $x \bmod 2^k$?
|
||||
Back: $\bmod 2^k$ is a convenient way of "zero-ing" out bits $x_{w-1}, \ldots, x_k$.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1708700130859-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
How is the following equality balanced for $k \leq w$? $$B2U_w(\langle x_{w-1}, \ldots, x_1, x_0 \rangle) = B2U_k(\langle x_{k-1}, \ldots, x_1, x_0 \rangle)$$
|
||||
Back: $$B2U_w(\langle x_{w-1}, \ldots, x_1, x_0 \rangle) \bmod 2^k = B2U_k(\langle x_{k-1}, \ldots, x_1, x_0 \rangle)$$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1708700225123-->
|
||||
END%%
|
||||
|
||||
In two's-complement encoding, truncating $x$ to $k$ bits is equal to $U2T_k(T2U_w(x) \bmod 2^k)$. Like with unsigned truncation, $B2U_k(x') = B2U_w(x) \bmod 2^k$. Therefore $$U2T_k(B2U_k(x')) = U2T_k(B2U_w(x) \bmod 2^k)$$
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the $k$-truncation of $w$-bit two's-complement $x$?
|
||||
Back: $U2T_k(T2U_w(x) \bmod 2^k)$
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1708701087974-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Cloze
|
||||
Two's-complement $k$-truncation of $w$-bit $x$ is {$U2T_k$}$(${$T2U_w(x) \bmod 2^k$}$)$.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1708701087985-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the purpose of $U2T_k$ in two's-complement truncation expression $U2T_k(T2U_w(x) \bmod 2^k)$?
|
||||
Back: To reinterpret the sign bit correctly.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1708702794304-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What is the purpose of $T2U_w$ in two's-complement truncation expression $U2T_k(T2U_w(x) \bmod 2^k)$?
|
||||
Back: To ensure $x$ is encoded with the right "type".
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1708702794309-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
Why isn't $T2U_w$ in two's-complement truncation $U2T_k(T2U_w(x) \bmod 2^k)$ strictly necessary?
|
||||
Back: $x \bmod 2^k$ will always yield an integer in range $[0, 2^k)$.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1708702794313-->
|
||||
END%%
|
||||
|
||||
%%ANKI
|
||||
Basic
|
||||
What additional steps does calculating two's-complement truncation have?
|
||||
Back: Casting to and from unsigned encoding.
|
||||
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
<!--ID: 1708701087982-->
|
||||
END%%
|
||||
|
||||
## References
|
||||
|
||||
* Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
|
||||
|
|
Loading…
Reference in New Issue