Fixup lambda calculus flashcards.
parent
32b180c83d
commit
016d498862
|
@ -313,7 +313,7 @@
|
||||||
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
"_journal/2024-03-18.md": "8479f07f63136a4e16c9cd07dbf2f27f",
|
||||||
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
"_journal/2024-03/2024-03-17.md": "23f9672f5c93a6de52099b1b86834e8b",
|
||||||
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
"set/directed-graph.md": "b4b8ad1be634a0a808af125fe8577a53",
|
||||||
"set/index.md": "4a190fea888f896f6784f350216cdf46",
|
"set/index.md": "74b50d8ca249c4e99b22abd4adedb300",
|
||||||
"set/graphs.md": "4bbcea8f5711b1ae26ed0026a4a69800",
|
"set/graphs.md": "4bbcea8f5711b1ae26ed0026a4a69800",
|
||||||
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
"_journal/2024-03-19.md": "a0807691819725bf44c0262405e97cbb",
|
||||||
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
"_journal/2024-03/2024-03-18.md": "63c3c843fc6cfc2cd289ac8b7b108391",
|
||||||
|
@ -334,7 +334,7 @@
|
||||||
"x86-64/declarations.md": "75bc7857cf2207a40cd7f0ee056af2f2",
|
"x86-64/declarations.md": "75bc7857cf2207a40cd7f0ee056af2f2",
|
||||||
"x86-64/instructions.md": "c9ae5dedaa22fbcdc486663877fc1c1e",
|
"x86-64/instructions.md": "c9ae5dedaa22fbcdc486663877fc1c1e",
|
||||||
"git/refs.md": "e20c2c9b14ba6c2bd235416017c5c474",
|
"git/refs.md": "e20c2c9b14ba6c2bd235416017c5c474",
|
||||||
"set/trees.md": "c29347ec0ac2e8d5339514c869ecaedf",
|
"set/trees.md": "b085bd8d08dccd8cbf02bb1b7a4baa43",
|
||||||
"_journal/2024-03-24.md": "1974cdb9fc42c3a8bebb8ac76d4b1fd6",
|
"_journal/2024-03-24.md": "1974cdb9fc42c3a8bebb8ac76d4b1fd6",
|
||||||
"_journal/2024-03/2024-03-23.md": "ad4e92cc2bf37f174a0758a0753bf69b",
|
"_journal/2024-03/2024-03-23.md": "ad4e92cc2bf37f174a0758a0753bf69b",
|
||||||
"_journal/2024-03/2024-03-22.md": "a509066c9cd2df692549e89f241d7bd9",
|
"_journal/2024-03/2024-03-22.md": "a509066c9cd2df692549e89f241d7bd9",
|
||||||
|
@ -372,7 +372,7 @@
|
||||||
"_journal/2024-04/2024-04-14.md": "037c77d0e11f2d58ffee61ea0a1708ab",
|
"_journal/2024-04/2024-04-14.md": "037c77d0e11f2d58ffee61ea0a1708ab",
|
||||||
"_journal/2024-04-16.md": "0bf6e2f2a3afab73d528cee88c4c1a92",
|
"_journal/2024-04-16.md": "0bf6e2f2a3afab73d528cee88c4c1a92",
|
||||||
"_journal/2024-04/2024-04-15.md": "256253b0633d878ca58060162beb7587",
|
"_journal/2024-04/2024-04-15.md": "256253b0633d878ca58060162beb7587",
|
||||||
"algebra/polynomials.md": "6e20029b44fe0d0c4f35ef8ee4874d82",
|
"algebra/polynomials.md": "da56d2d6934acfa2c6b7b2c73c87b2c7",
|
||||||
"algebra/sequences/delta-constant.md": "70f45d7b8d5c3a147fabc279105c4983",
|
"algebra/sequences/delta-constant.md": "70f45d7b8d5c3a147fabc279105c4983",
|
||||||
"_journal/2024-04-19.md": "a293087860a7f378507a96df0b09dd2b",
|
"_journal/2024-04-19.md": "a293087860a7f378507a96df0b09dd2b",
|
||||||
"_journal/2024-04/2024-04-18.md": "f6e5bee68dbef90a21ca92a846930a88",
|
"_journal/2024-04/2024-04-18.md": "f6e5bee68dbef90a21ca92a846930a88",
|
||||||
|
@ -436,7 +436,7 @@
|
||||||
"_journal/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
"_journal/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||||
"_journal/2024-05/2024-05-12.md": "ca9f3996272152ef89924bb328efd365",
|
"_journal/2024-05/2024-05-12.md": "ca9f3996272152ef89924bb328efd365",
|
||||||
"git/remotes.md": "2208e34b3195b6f1ec041024a66fb38b",
|
"git/remotes.md": "2208e34b3195b6f1ec041024a66fb38b",
|
||||||
"programming/pred-trans.md": "24fb4b8d8137626dcacbc02c9ecd07a1",
|
"programming/pred-trans.md": "6925b0be2de73c214df916a53e23fd5a",
|
||||||
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
"set/axioms.md": "063955bf19c703e9ad23be2aee4f1ab7",
|
||||||
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
"_journal/2024-05-14.md": "f6ece1d6c178d57875786f87345343c5",
|
||||||
"_journal/2024-05/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
"_journal/2024-05/2024-05-13.md": "71eb7924653eed5b6abd84d3a13b532b",
|
||||||
|
@ -466,7 +466,7 @@
|
||||||
"programming/λ-Calculus.md": "bf36bdaf85abffd171bb2087fb8228b2",
|
"programming/λ-Calculus.md": "bf36bdaf85abffd171bb2087fb8228b2",
|
||||||
"_journal/2024-05-23.md": "9d9106a68197adcee42cd19c69d2f840",
|
"_journal/2024-05-23.md": "9d9106a68197adcee42cd19c69d2f840",
|
||||||
"_journal/2024-05/2024-05-22.md": "3c29eec25f640183b0be365e7a023750",
|
"_journal/2024-05/2024-05-22.md": "3c29eec25f640183b0be365e7a023750",
|
||||||
"programming/lambda-calculus.md": "6930e7031babe1fb5a2dec9cc3bedcac",
|
"programming/lambda-calculus.md": "2d68babe42439dc5daa318ec3f28881f",
|
||||||
"_journal/2024-05-25.md": "04e8e1cf4bfdbfb286effed40b09c900",
|
"_journal/2024-05-25.md": "04e8e1cf4bfdbfb286effed40b09c900",
|
||||||
"_journal/2024-05/2024-05-24.md": "86132f18c7a27ebc7a3e4a07f4867858",
|
"_journal/2024-05/2024-05-24.md": "86132f18c7a27ebc7a3e4a07f4867858",
|
||||||
"_journal/2024-05/2024-05-23.md": "d0c98b484b1def3a9fd7262dcf2050ad",
|
"_journal/2024-05/2024-05-23.md": "d0c98b484b1def3a9fd7262dcf2050ad",
|
||||||
|
@ -476,7 +476,11 @@
|
||||||
"_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95",
|
"_journal/2024-05/2024-05-26.md": "abe84b5beae74baa25501c818e64fc95",
|
||||||
"algebra/set.md": "d7b4c7943f3674bb152389f4bef1a234",
|
"algebra/set.md": "d7b4c7943f3674bb152389f4bef1a234",
|
||||||
"algebra/boolean.md": "56d2e0be2853d49b5dface7fa2d785a9",
|
"algebra/boolean.md": "56d2e0be2853d49b5dface7fa2d785a9",
|
||||||
"git/merge-conflicts.md": "cb7d4d373639f75f6647be60f3fe97f3"
|
"git/merge-conflicts.md": "cb7d4d373639f75f6647be60f3fe97f3",
|
||||||
|
"_journal/2024-05-28.md": "0f6aeb5ec126560acdc2d8c5c6570337",
|
||||||
|
"_journal/2024-05/2024-05-27.md": "e498d5154558ebcf7261302403ea8016",
|
||||||
|
"_journal/2024-05-29.md": "566571bac8f4945bde6bc4483e3d6bc6",
|
||||||
|
"_journal/2024-05/2024-05-28.md": "28297d2a418f591ebc15c74fa459ddd9"
|
||||||
},
|
},
|
||||||
"fields_dict": {
|
"fields_dict": {
|
||||||
"Basic": [
|
"Basic": [
|
||||||
|
|
|
@ -0,0 +1,9 @@
|
||||||
|
---
|
||||||
|
title: "2024-05-29"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Go (1 Life & Death Problem)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
|
@ -0,0 +1,9 @@
|
||||||
|
---
|
||||||
|
title: "2024-05-28"
|
||||||
|
---
|
||||||
|
|
||||||
|
- [x] Anki Flashcards
|
||||||
|
- [x] KoL
|
||||||
|
- [ ] Sheet Music (10 min.)
|
||||||
|
- [ ] Go (1 Life & Death Problem)
|
||||||
|
- [ ] Korean (Read 1 Story)
|
|
@ -14,8 +14,8 @@ The coefficients of $p(n)$ are $a_0, a_1, \ldots, a_d$. Furthermore, $a_d \neq 0
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
Using sigma notation, a polynomial in $n$ of degree $d$ is a function of what form?
|
Using sigma notation, a polynomial $p(n)$ in $n$ of degree $d$ is a function of what form?
|
||||||
Back: $p(n) = \sum_{i=0}^d a_in^i$ where $a_d \neq 0$.
|
Back: $p(n) = \sum_{k=0}^d a_kn^k$ where $a_d \neq 0$.
|
||||||
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||||
<!--ID: 1713580808758-->
|
<!--ID: 1713580808758-->
|
||||||
END%%
|
END%%
|
||||||
|
|
|
@ -145,7 +145,7 @@ END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What term refers to the inductive cases of the $\lambda$-term definition?
|
What terms refer to the inductive cases of the $\lambda$-term definition?
|
||||||
Back: Application and abstraction.
|
Back: Application and abstraction.
|
||||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
<!--ID: 1716494526337-->
|
<!--ID: 1716494526337-->
|
||||||
|
@ -197,14 +197,6 @@ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combi
|
||||||
<!--ID: 1716498992500-->
|
<!--ID: 1716498992500-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Basic
|
|
||||||
How is expression $MNPQ$ written with parentheses reintroduced?
|
|
||||||
Back: $(((MN)P)Q)$
|
|
||||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
||||||
<!--ID: 1716498992520-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Cloze
|
Cloze
|
||||||
By convention, parentheses in $\lambda$-calculus are {left}-associative.
|
By convention, parentheses in $\lambda$-calculus are {left}-associative.
|
||||||
|
@ -220,13 +212,6 @@ Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combi
|
||||||
<!--ID: 1716498992530-->
|
<!--ID: 1716498992530-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
|
||||||
Cloze
|
|
||||||
Expression $(MN)$ is interpreted as applying {$M$} to {$N$}.
|
|
||||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
|
||||||
<!--ID: 1716498992534-->
|
|
||||||
END%%
|
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
How are parentheses conventionally reintroduced to $\lambda$-term $MN$?
|
How are parentheses conventionally reintroduced to $\lambda$-term $MN$?
|
||||||
|
@ -398,7 +383,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What preprocessing step does Hindley et al. recommend when counting occurrences of $\lambda$-terms?
|
What preprocessing step does Hindley et al. recommend when counting occurrences of $\lambda$-terms?
|
||||||
Back: Reintroduce parentheses in the top-level term.
|
Back: Reintroduce parentheses.
|
||||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
<!--ID: 1716743248127-->
|
<!--ID: 1716743248127-->
|
||||||
END%%
|
END%%
|
||||||
|
@ -423,7 +408,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What is the scope of the leftmost $\lambda y$ in the following term? $$(\lambda y. yx(\lambda x. y(\lambda y.z)x))vw$$
|
What is the scope of the leftmost $\lambda y$ in the following term? $$(\lambda y. yx(\lambda x. y(\lambda y.z)x))vw$$
|
||||||
Back: $yx(\lambda x. y(\lambda y. z)x))vw$
|
Back: $yx(\lambda x. y(\lambda y. z)x)$
|
||||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
<!--ID: 1716745016002-->
|
<!--ID: 1716745016002-->
|
||||||
END%%
|
END%%
|
||||||
|
@ -462,7 +447,7 @@ $FV(P)$ denotes the set of all free variables of $P$. A **closed term** is a ter
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What kind of $\lambda$-terms are considered bound or free?
|
What kind of $\lambda$-terms can be classified as bound and/or free?
|
||||||
Back: Variables.
|
Back: Variables.
|
||||||
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
|
||||||
<!--ID: 1716745016008-->
|
<!--ID: 1716745016008-->
|
||||||
|
|
|
@ -128,7 +128,7 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
*Why* is $\{T\}\; \text{while }T\text{ do skip}\; \{T\}$ everywhere false?
|
*Why* is $\{T\}\; \text{while }T\text{ do skip}\; \{T\}$ everywhere false?
|
||||||
Back: Because $\text{while }T\text{ do skip}$ never terminates.
|
Back: Because "$\text{while }T\text{ do skip}$" never terminates.
|
||||||
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
||||||
<!--ID: 1715631869132-->
|
<!--ID: 1715631869132-->
|
||||||
END%%
|
END%%
|
||||||
|
|
|
@ -182,7 +182,7 @@ END%%
|
||||||
|
|
||||||
## Extensionality
|
## Extensionality
|
||||||
|
|
||||||
If two sets have exactly the same members, then they are equal: $$\forall A, \forall B, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
|
If two sets have exactly the same members, then they are equal: $$\forall A, \forall B, (\forall x, x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
What does the extensionality axiom state?
|
What does the extensionality axiom state?
|
||||||
|
@ -194,14 +194,14 @@ END%%
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
How is the extensionality axiom expressed using first-order logic?
|
How is the extensionality axiom expressed using first-order logic?
|
||||||
Back: $$\forall A, \forall B, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
|
Back: $$\forall A, \forall B, (\forall x, x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1715649734312-->
|
<!--ID: 1715649734312-->
|
||||||
END%%
|
END%%
|
||||||
|
|
||||||
%%ANKI
|
%%ANKI
|
||||||
Basic
|
Basic
|
||||||
The following encodes which set theory axiom? $$\forall A, \forall B, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
|
The following encodes which set theory axiom? $$\forall A, \forall B, (\forall x, x \in A \Leftrightarrow x \in B) \Rightarrow A = B$$
|
||||||
Back: The extensionality axiom.
|
Back: The extensionality axiom.
|
||||||
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
|
||||||
<!--ID: 1715649069254-->
|
<!--ID: 1715649069254-->
|
||||||
|
|
|
@ -1477,7 +1477,7 @@ Basic
|
||||||
How should the nil constructor of an inductive binary tree, say `Tree`, be defined?
|
How should the nil constructor of an inductive binary tree, say `Tree`, be defined?
|
||||||
Back:
|
Back:
|
||||||
```lean
|
```lean
|
||||||
| constructor : Tree α
|
| nil : Tree α
|
||||||
```
|
```
|
||||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||||
Tags: lean
|
Tags: lean
|
||||||
|
@ -1489,7 +1489,7 @@ Basic
|
||||||
How should the non-nil constructor of an inductive binary tree, say `Tree`, be defined?
|
How should the non-nil constructor of an inductive binary tree, say `Tree`, be defined?
|
||||||
Back:
|
Back:
|
||||||
```lean
|
```lean
|
||||||
| constructor : α → Tree α → Tree α → Tree α
|
| node : α → Tree α → Tree α → Tree α
|
||||||
```
|
```
|
||||||
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
Reference: Thomas H. Cormen et al., _Introduction to Algorithms_, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
|
||||||
Tags: lean
|
Tags: lean
|
||||||
|
|
Loading…
Reference in New Issue