Add notes on sorting algorithms and equiv-trans.

c-declarations
Joshua Potter 2024-02-08 07:02:59 -07:00
parent 9cabe16101
commit 00f23d5f94
12 changed files with 652 additions and 27 deletions

View File

@ -72,11 +72,14 @@
"**/*.excalidraw.md" "**/*.excalidraw.md"
] ]
}, },
"Added Media": [], "Added Media": [
"insertion-sort.gif",
"selection-sort.gif"
],
"File Hashes": { "File Hashes": {
"algorithms/index.md": "1583c07edea4736db27c38fe2b6c4c31", "algorithms/index.md": "1583c07edea4736db27c38fe2b6c4c31",
"algorithms/sorting/index.md": "7b3b43d63ab2143e1314bb1b4e8392d2", "algorithms/sorting/index.md": "6fada1f3d5d3af64687719eb465a5b97",
"algorithms/sorting/insertion-sort.md": "6ad645860c9c281eb8eb06c93135746f", "algorithms/sorting/insertion-sort.md": "a531d611f4e2908fc4153b1b92077661",
"bash/index.md": "3b5296277f095acdf16655adcdf524af", "bash/index.md": "3b5296277f095acdf16655adcdf524af",
"bash/prompts.md": "61cb877e68da040a15b85af76b1f68ba", "bash/prompts.md": "61cb877e68da040a15b85af76b1f68ba",
"bash/quoting.md": "b1d8869a91001f8b22f0cdc54d806f61", "bash/quoting.md": "b1d8869a91001f8b22f0cdc54d806f61",
@ -99,7 +102,7 @@
"posix/index.md": "f7b1ae55f8f5e8f50f89738b1aca9111", "posix/index.md": "f7b1ae55f8f5e8f50f89738b1aca9111",
"posix/signals.md": "2120ddd933fc0d57abb93c33f639afd8", "posix/signals.md": "2120ddd933fc0d57abb93c33f639afd8",
"templates/daily.md": "7866014e730e85683155207a02e367d8", "templates/daily.md": "7866014e730e85683155207a02e367d8",
"posix/regexp.md": "2529451da41c81b891ea8ce82cca549e", "posix/regexp.md": "e41bf86b770958316df1e20578d6020f",
"journal/2024-02-04.md": "e2b5678fc53d7284b71ed6820c02b954", "journal/2024-02-04.md": "e2b5678fc53d7284b71ed6820c02b954",
"gawk/regexp.md": "dbd5f9f85a2658b304a635a47379e871", "gawk/regexp.md": "dbd5f9f85a2658b304a635a47379e871",
"_templates/daily.md": "7866014e730e85683155207a02e367d8", "_templates/daily.md": "7866014e730e85683155207a02e367d8",
@ -110,8 +113,15 @@
"_journal/2024-02-02.md": "a3b222daee8a50bce4cbac699efc7180", "_journal/2024-02-02.md": "a3b222daee8a50bce4cbac699efc7180",
"_journal/2024-02-01.md": "3aa232387d2dc662384976fd116888eb", "_journal/2024-02-01.md": "3aa232387d2dc662384976fd116888eb",
"_journal/2024-01-31.md": "7c7fbfccabc316f9e676826bf8dfe970", "_journal/2024-01-31.md": "7c7fbfccabc316f9e676826bf8dfe970",
"logic/equiv-trans.md": "82a3376977bc5579fba5f9201c9f2c14", "logic/equiv-trans.md": "660a2a08ddcf47c05af3f8704feb5931",
"_journal/2024-02-07.md": "9197386e8caaf9502f12fdc10d68fa9f" "_journal/2024-02-07.md": "8d81cd56a3b33883a7706d32e77b5889",
"algorithms/loop-invariants.md": "cbefc346842c21a6cce5c5edce451eb2",
"algorithms/loop-invariant.md": "d883dfc997ee28a7a1e24b995377792b",
"algorithms/running-time.md": "5efc0791097d2c996f931c9046c95f65",
"algorithms/order-growth.md": "bf43ad8c16037baf1e865839f5e46704",
"_journal/2024-02-08.md": "26ba491937c92e55d3a43f8800677dcb",
"algorithms/sorting/selection-sort.md": "f31cf7e706504b9be48bed7af6e37074",
"algorithms/index 1.md": "6fada1f3d5d3af64687719eb465a5b97"
}, },
"fields_dict": { "fields_dict": {
"Basic": [ "Basic": [

View File

@ -4,10 +4,13 @@ title: "2024-02-07"
- [x] Anki Flashcards - [x] Anki Flashcards
- [x] KoL - [x] KoL
- [ ] Sheet Music (10 min.) - [x] Sheet Music (10 min.)
- [ ] OGS (1 Life & Death Problem) - [ ] OGS (1 Life & Death Problem)
- [ ] Korean (Read 1 Story) - [x] Korean (Read 1 Story)
- [ ] Interview Prep (1 Practice Problem) - [x] Interview Prep (1 Practice Problem)
- [ ] Log Work Hours (Max 3 hours) - [x] Log Work Hours (Max 3 hours)
* Read section 4.1 of "GAWK: Effective AWK Programming". * Read section 4.1 of "GAWK: Effective AWK Programming".
* Began translating more of "The Science of Programming" into flashcards.
* Begin re-reading order of growth concepts.
* Solved [Palindrome Number](https://leetcode.com/problems/palindrome-number/) and [Regular Expression Matching](https://leetcode.com/problems/regular-expression-matching/description/) (though my solution in the latter is subpar, using recursion instead of dynamic programming).

View File

@ -0,0 +1,13 @@
---
title: "2024-02-08"
---
- [x] Anki Flashcards
- [x] KoL
- [ ] Sheet Music (10 min.)
- [ ] OGS (1 Life & Death Problem)
- [ ] Korean (Read 1 Story)
- [ ] Interview Prep (1 Practice Problem)
- [ ] Log Work Hours (Max 3 hours)
* Add notes on selection sort.

View File

@ -1,7 +1,7 @@
--- ---
title: Sorting title: Sorting
TARGET DECK: Obsidian::STEM TARGET DECK: Obsidian::STEM
FILE TAGS: algorithm sorting FILE TAGS: algorithm::sorting
tags: tags:
- algorithm - algorithm
- sorting - sorting

View File

@ -0,0 +1,90 @@
---
title: Loop Invariant
TARGET DECK: Obsidian::STEM
FILE TAGS: algorithm
tags:
- algorithm
---
## Overview
A loop invariant $P$ is a condition that holds before, during, and after each iteration of a loop (e.g. `for` or `while`). These "timings" correspond to the three necessary properties of an invariant:
* Initialization
* $P$ is true before the first iteration of the loop.
* Maintenance
* If $P$ is true before an iteration, $P$ is also true before the next iteration.
* Termination
* $P$ provides a condition used to prove an algorithm's correctness.
%%ANKI
Basic
What are the three necessary properties of a loop invariant?
Back: Initialization, maintenance, and termination.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707329732922-->
END%%
%%ANKI
Basic
What does it mean for loop invariant $P$ to respect initialization?
Back: $P$ is true before the first iteration of the loop.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707329732926-->
END%%
%%ANKI
Basic
What does it mean for loop invariant $P$ to respect maintenance?
Back: If $P$ is true before an iteration, $P$ is also true before the next iteration.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707329732928-->
END%%
%%ANKI
Basic
What does it mean for loop invariant $P$ to respect termination?
Back: $P$ provides a condition used to prove an algorithm's correctness.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707329732929-->
END%%
%%ANKI
Basic
At what point in the following should initialization of a loop invariant be checked?
```c
for (int i = 0; i < n; ++i) { ... }
```
Back: After `int i = 0` but before `i < n`.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
Tags: c
<!--ID: 1707329732931-->
END%%
Notice loop invariants mirror mathematical induction. Initialization is analogous to an inductive base case while iteration is analogous to the inductive step.
%%ANKI
Cloze
Loop invariants are to {initialization} whereas mathematical induction is to {a base case}.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707329951146-->
END%%
%%ANKI
Cloze
Loop invariants are to {maintenance} whereas mathematical induction is to {the inductive step}.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707329951148-->
END%%
%%ANKI
Basic
Which loop invariant property has no analogy to mathematical induction?
Back: Termination
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707329951150-->
END%%
## References
* Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).

View File

@ -0,0 +1,96 @@
---
title: Order of Growth
TARGET DECK: Obsidian::STEM
FILE TAGS: algorithm::complexity
tags:
- algorithm
- complexity
---
## Overview
The **running time** of an algorithm is usually considered as a function of its **input size**. How input size is measured depends on the problem at hand. For instance, [[index 1|sorting]] algorithms have an input size corresponding to the number of elements to sort.
%%ANKI
Basic
How is the running time of a program traditionally measured?
Back: As a function of its input size.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707334419352-->
END%%
%%ANKI
Basic
How do you determine the input size used to measure an algorithm's running time?
Back: This depends entirely on the specific problem/algorithm.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707334419356-->
END%%
%%ANKI
Basic
What *concrete* measure is typically used to measure running time?
Back: The number of primitive operations executed.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707334419359-->
END%%
%%ANKI
Basic
What *abstract* measure is typically used to measure running time?
Back: It's order of growth.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707344177499-->
END%%
%%ANKI
Basic
Why does Cormen et al. state the scope of average-case analysis is limited?
Back: What constitutes an "average" input isn't always clear.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707334419363-->
END%%
%%ANKI
Basic
What about running time are algorithm designers mostly interested in?
Back: It's order of growth.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707344177503-->
END%%
%%ANKI
Basic
How does order of growth relate to running time?
Back: Order of growth measures how quickly running time grows with respect to input size.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707344177506-->
END%%
%%ANKI
Basic
Why are lower-ordered terms ignored when determining order of growth?
Back: They become less significant as input size grows.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707344177510-->
END%%
%%ANKI
Basic
Why are leading coefficients ignored when determining order of growth?
Back: They become less significant as input size grows.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707344177513-->
END%%
%%ANKI
Basic
Polynomials describing order of growth usually have what two parts ignored?
Back: Coefficients and lower-ordered terms.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707344177515-->
END%%
## Reference
* Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.8 KiB

View File

@ -1,7 +1,7 @@
--- ---
title: Insertion Sort title: Insertion Sort
TARGET DECK: Obsidian::STEM TARGET DECK: Obsidian::STEM
FILE TAGS: algorithm sorting FILE TAGS: algorithm::sorting
tags: tags:
- algorithm - algorithm
- sorting - sorting
@ -9,16 +9,16 @@ tags:
## Overview ## Overview
| Property | Value | Property | Value
| ---------- | -------- | ---------- | --------
| Best Case | $O(n)$ | Best Case | $O(n)$
| Worst Case | $O(n^2)$ | Worst Case | $O(n^2)$
| Avg. Case | $O(n^2)$ | Avg. Case | $O(n^2)$
| Memory | $O(1)$ | Memory | $O(1)$
| In place | Yes | In place | Yes
| Stable | Yes | Stable | Yes
Insertion sort works by advancing an index `i` through an array `A[1..n]` such that `A[1..i]` is kept in sorted order. ![[insertion-sort.gif]]
%%ANKI %%ANKI
Basic Basic
@ -52,6 +52,14 @@ Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambri
<!--ID: 1706926586951--> <!--ID: 1706926586951-->
END%% END%%
%%ANKI
Basic
What is insertion sort's average case runtime?
Back: $O(n^2)$
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707329732933-->
END%%
%%ANKI %%ANKI
Basic Basic
Is insertion sort in place? Is insertion sort in place?
@ -83,10 +91,49 @@ void insertion_sort(const int n, int A[static n]) {
%%ANKI %%ANKI
Basic Basic
What loop invariant is maintained in insertion sort? What sorting algorithm does the following demonstrate?
Back: `A[1..i]` is in sorted order. ![[insertion-sort.gif]]
Back: Insertion sort.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009). Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706927594718--> <!--ID: 1707400559085-->
END%%
## Loop Invariant
Consider [[loop-invariant|loop invariant]] $P$ given by
> `A[0..i-1]` consists of the original `A[0..i-1]` elements but in sorted order.
We prove $P$ maintains the requisite properties:
* Initialization
* When `i = 1`, `A[0..0]` contains a single element. This trivially satisfies $P$.
* Maintenance
* Suppose $P$ holds for some `1 ≤ i < n`. Then `A[0..i-1]` consists of the original `A[0..i-1]` elements but in sorted order. On iteration `i + 1`, the nested for loop puts `A[0..i]` in sorted order. At the end of the iteration, `i` is incremented meaning `A[0..i-1]` still satisfies $P$.
* Termination
* The loop ends because `i < n` is no longer true. Then `i = n`. Since $P$ holds, this means `A[0..n-1]`, the entire array, is in sorted order.
%%ANKI
Basic
Given array `A[0..n-1]`, what is insertion sort's loop invariant?
Back: `A[0..i-1]` consists of the original `A[0..i-1]` elements but in sorted order.
<!--ID: 1707332638371-->
END%%
%%ANKI
Basic
What is initialization of insertion sort's loop invariant?
Back: Sorting starts with an singleton array which is trivially sorted.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707332638373-->
END%%
%%ANKI
Basic
What is maintenance of insertion sort's loop invariant?
Back: Each iteration puts the current element into sorted order.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707332638375-->
END%% END%%
## Analogy ## Analogy
@ -111,6 +158,39 @@ Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambri
<!--ID: 1706927594732--> <!--ID: 1706927594732-->
END%% END%%
%%ANKI
Basic
How does insertion sort partition its input array?
Back:
```
[ sorted | unsorted ]
```
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707399790957-->
END%%
%%ANKI
Basic
How many comparisons does insertion sort typically perform with `x`?
```
[ sorted | x : unsorted ]
```
Back: One plus however many elements in `sorted` are greater than `x`.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707399790958-->
END%%
%%ANKI
Basic
Which element will insertion sort move to `sorted`?
```
[ sorted | unsorted ]
```
Back: The first element of `unsorted`.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707399790960-->
END%%
## References ## References
* Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009). * Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.9 KiB

View File

@ -0,0 +1,155 @@
---
title: Selection Sort
TARGET DECK: Obsidian::STEM
FILE TAGS: algorithm::sorting
tags:
- algorithm
- sorting
---
## Overview
Property | Value
---------- | --------
Best Case | $O(n^2)$
Worst Case | $O(n^2)$
Avg. Case | $O(n^2)$
Memory | $O(1)$
In Place | Yes
Stable | Yes
![[selection-sort.gif]]
%%ANKI
Basic
What is selection sort's best case runtime?
Back: $O(n^2)$
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707398773323-->
END%%
%%ANKI
Basic
What is selection sort's worst case runtime?
Back: $O(n^2)$
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707398773326-->
END%%
%%ANKI
Basic
What is selection sort's average case runtime?
Back: $O(n^2)$
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707398773327-->
END%%
%%ANKI
Basic
Is selection sort in place?
Back: Yes
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707398773328-->
END%%
%%ANKI
Basic
Is selection sort stable?
Back: Yes
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707398773330-->
END%%
```c
void swap(int i, int j, int *A) {
int tmp = A[i];
A[i] = A[j];
A[j] = tmp;
}
void selection_sort(const int n, int A[static n]) {
for (int i = 0; i < n - 1; ++i) {
int mini = i;
for (int j = i + 1; j < n; ++j) {
if (A[j] < A[mini]) {
mini = j;
}
}
swap(i, mini, A);
}
}
```
%%ANKI
Basic
What sorting algorithm does the following demonstrate?
![[selection-sort.gif]]
Back: Selection sort.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707400943836-->
END%%
## Loop Invariant
Consider [[loop-invariant|loop invariant]] $P$ given by
> On each iteration, `A[0..i-1]` is a sorted array of the `i` least elements of `A`.
We prove $P$ maintains the requisite properties:
* Initialization
* When `i = 0`, `A[0..-1]` is an empty array. This trivially satisfies $P$.
* Maintenance
* Suppose $P$ holds for some `0 ≤ i < n - 1`. Then `A[0..i-1]` is a sorted array of the `i` least elements of `A`. Our inner loop then finds the smallest element in `A[i..n]` and swaps it with `A[i]`. Therefore `A[0..i]` is not a sorted array of the `i + 1` least elements of `A`. At the end of the iteration, `i` is incremented meaning `A[0..i-1]` still satisfies $P$.
* Termination
* On termination, `i = n - 1` and `A[0..n-2]` are the `n - 1` least elements of `A` in sorted order. But, by exhaustion, `A[n-1]` must be the largest element meaning `A[0..n-1]`, the entire array, is in sorted order.
%%ANKI
Basic
Given array `A[0..n-1]`, what is selection sort's loop invariant?
Back: `A[0..i-1]` is a sorted array of the `i` least elements of `A`.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707398773331-->
END%%
%%ANKI
Basic
What is initialization of selection sort's loop invariant?
Back: Sorting starts with an empty array which is trivially sorted.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707398773333-->
END%%
%%ANKI
Basic
What is maintenance of selection sort's loop invariant?
Back: Each iteration puts the next least element into the sorted subarray.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707398773334-->
END%%
%%ANKI
Basic
How does selection sort partition its input array?
Back:
```
[ sorted | unsorted ]
```
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707399790952-->
END%%
%%ANKI
Basic
Which element will selection sort move to `sorted`?
```
[ sorted | unsorted ]
```
Back: The least element in `unsorted`.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707399790955-->
END%%
## References
* Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).

View File

@ -499,6 +499,14 @@ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in
<!--ID: 1706994861360--> <!--ID: 1706994861360-->
END%% END%%
%%ANKI
Basic
What distinguishes an equality from an equivalence?
Back: An equivalence is an equality that is also a tautology.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178709-->
END%%
## Equivalence Rules ## Equivalence Rules
* Rule of Substitution * Rule of Substitution
@ -563,6 +571,44 @@ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in
<!--ID: 1707253246458--> <!--ID: 1707253246458-->
END%% END%%
%%ANKI
Basic
What is a "theorem" in the equivalence-transformation formal system?
Back: An equality derived from the axioms and inference rules.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178712-->
END%%
%%ANKI
Basic
How is e.g. the Law of Implication proven in the system of evaluation?
Back: With truth tables
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178714-->
END%%
%%ANKI
Basic
How is e.g. the Law of Implication proven in the formal system?
Back: It isn't. It is an axiom.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178715-->
END%%
%%ANKI
Cloze
The system of evaluation and formal system are connected by the following biconditional: {$e$ is a tautology} iff {$e = T$ is a theorem}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178717-->
END%%
%%ANKI
Cloze
The {1:system of evaluation} is to {2:"$e$ is a tautology"} whereas the {2:formal system} is to {1:"$e = T$ is a theorem"}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316276203-->
END%%
## Normal Forms ## Normal Forms
Every proposition can be written in **disjunctive normal form** (DNF) and **conjunctive normal form** (CNF). This is evident with the use of truth tables. To write a proposition in DNF, write its corresponding truth table and $\lor$ each row that evaluates to $T$. To write the same proposition in CNF, apply $\lor$ to each row that evaluates to $F$ and negate it. Every proposition can be written in **disjunctive normal form** (DNF) and **conjunctive normal form** (CNF). This is evident with the use of truth tables. To write a proposition in DNF, write its corresponding truth table and $\lor$ each row that evaluates to $T$. To write the same proposition in CNF, apply $\lor$ to each row that evaluates to $F$ and negate it.
@ -644,6 +690,138 @@ Reference: Gries, David. *The Science of Programming*. Texts and Monographs in
<!--ID: 1707311869003--> <!--ID: 1707311869003-->
END%% END%%
## Short-Circuit Evaluation
The $\textbf{cand}$ and $\textbf{cor}$ operator allows short-circuiting evaluation in the case of undefined ($U$) values.
%%ANKI
Basic
What truth values do short-circuit evaluation operators act on?
Back: $T$, $F$, and $U$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708622-->
END%%
%%ANKI
Basic
What C operator corresponds to $\textbf{cand}$?
Back: `&&`
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
<!--ID: 1707316606004-->
END%%
%%ANKI
Basic
Why is $\textbf{cand}$ named the way it is?
Back: It is short for **c**onditional **and**.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708625-->
END%%
%%ANKI
Basic
How is $p \textbf{ cand } q$ written as a conditional?
Back: $\textbf{if } p \textbf{ then } q \textbf{ else } F$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708627-->
END%%
%%ANKI
Basic
When can $\textbf{cand}$ evaluate to a non-$U$ value despite being given a $U$ operand?
Back: $F \textbf{ cand } U = F$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708628-->
END%%
%%ANKI
Basic
What C operator corresponds to $\textbf{cor}$?
Back: `||`
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: c
<!--ID: 1707316606007-->
END%%
%%ANKI
Basic
Why is $\textbf{cor}$ named the way it is?
Back: It is short for **c**onditional **or**.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708630-->
END%%
%%ANKI
Basic
How is $p \textbf{ cor } q$ written as a conditional?
Back: $\textbf{if } p \textbf{ then } T \textbf{ else } q$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708632-->
END%%
%%ANKI
Basic
When can $\textbf{cor}$ evaluate to a non-$U$ value despite being given a $U$ operand?
Back: $T \textbf{ cor } U = T$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708633-->
END%%
* Associative Laws
* $E1 \textbf{ cand } (E2 \textbf{ cand } E3) = (E1 \textbf{ cand } E2) \textbf{ cand } E3$
* $E1 \textbf{ cor } (E2 \textbf{ cor } E3) = (E1 \textbf{ cor } E2) \textbf{ cor } E3$
%%ANKI
Basic
Which of the short-circuit logical operators do the commutative laws apply to?
Back: Neither of them.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708635-->
END%%
%%ANKI
Basic
Which of the short-circuit logical operators do the associative laws apply to?
Back: $\textbf{cand}$ and $\textbf{cor}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708636-->
END%%
* Distributive Laws
* $E1 \textbf{ cand } (E2 \textbf{ cor } E3) = (E1 \textbf{ cand } E2) \textbf{ cor } (E1 \textbf{ cand } E3)$
* $E1 \textbf{ cor } (E2 \textbf{ cand } E3) = (E1 \textbf{ cor } E2) \textbf{ cand } (E1 \textbf{ cor } E3)$
%%ANKI
Basic
What is the distributive law of e.g. $\textbf{cor}$ over $\textbf{cand}$?
Back: $E1 \textbf{ cor } (E2 \textbf{ cand } E3) = (E1 \textbf{ cor } E2) \textbf{ cand } (E1 \textbf{ cor } E3)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708638-->
END%%
* De Morgan's Laws
* $\neg (E1 \textbf{ cand } E2) = \neg E1 \textbf{ cor } \neg E2$
* $\neg (E1 \textbf{ cor } E2) = \neg E1 \textbf{ cand } \neg E2$
%%ANKI
Basic
Which of the short-circuit logical operators do De Morgan's Laws apply to?
Back: $\textbf{cand}$ and $\textbf{cor}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708640-->
END%%
%%ANKI
Basic
What is De Morgan's Law of e.g. $\textbf{cor}$?
Back: $\neg (E1 \textbf{ cor } E2) = \neg E1 \textbf{ cand } \neg E2$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708642-->
END%%
Gries lists other "Laws" but they don't seem as important to note here. What's worth noting is that the other [[#Equivalence Schemas]] listed above still apply if we can limit operands to just $T$ and $F$.
## References ## References
* Avigad, Jeremy. Theorem Proving in Lean, n.d. * Avigad, Jeremy. Theorem Proving in Lean, n.d.

View File

@ -132,7 +132,7 @@ END%%
%%ANKI %%ANKI
Basic Basic
`^` and `$` belong to what operator category? `^` and `$$` belong to what operator category?
Back: Anchors Back: Anchors
Reference: “POSIX Basic Regular Expressions,” accessed February 4, 2024, [https://en.wikibooks.org/wiki/Regular_Expressions/POSIX_Basic_Regular_Expressions](https://en.wikibooks.org/wiki/Regular_Expressions/POSIX_Basic_Regular_Expressions). Reference: “POSIX Basic Regular Expressions,” accessed February 4, 2024, [https://en.wikibooks.org/wiki/Regular_Expressions/POSIX_Basic_Regular_Expressions](https://en.wikibooks.org/wiki/Regular_Expressions/POSIX_Basic_Regular_Expressions).
<!--ID: 1707050923643--> <!--ID: 1707050923643-->
@ -243,7 +243,7 @@ Notation for describing a class of characters specific to a given locale/charact
%%ANKI %%ANKI
Basic Basic
What inconsistency do character classes introduce? What portability issue do character classes introduce?
Back: Matching characters are dependent on locale/character set. Back: Matching characters are dependent on locale/character set.
Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf) Reference: Robbins, Arnold D. “GAWK: Effective AWK Programming,” October 2023. [https://www.gnu.org/software/gawk/manual/gawk.pdf](https://www.gnu.org/software/gawk/manual/gawk.pdf)
<!--ID: 1707050923719--> <!--ID: 1707050923719-->