**Finite automata** are classified as either **deterministic** or **nondeterministic**. These two representations are equivalent.
If $s$ is processed by finite automaton $M$ such that $M$ finishes in an accept state, we say $M$ **accepts** $s$. Otherwise $M$ **rejects** $s$. If $A$ is the set of all strings that $M$ accepts, we say that $A$ is the **language of machine $M$**, denoted $L(M) = A$. We say that $M$ **recognizes** $A$.
A [[computability/index|language]] is called a **regular language** if a finite automaton recognizes it.
%%ANKI
Basic
Finite automaton are largely classified in what two buckets?
Back: Deterministic and nondeterministic.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1736721887587-->
END%%
%%ANKI
Basic
What does it mean for finite automaton $M$ to accept string $s$?
Back: $M$ finishes processing $s$ on an accept state.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734999643336-->
END%%
%%ANKI
Basic
What does it mean for finite automaton $M$ to reject string $s$?
Back: $M$ finishes processing $s$ on a non-accept state.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734999643342-->
END%%
%%ANKI
Basic
Let $M$ be a finite automaton. What is the language of $M$?
Back: The set of strings $M$ accepts.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734999643347-->
END%%
%%ANKI
Cloze
Finite automaton $M$ {1:accepts} {2:strings} and {2:recognizes} {1:languages}.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734999643352-->
END%%
%%ANKI
Basic
How is the language of finite automaton $M$ denoted?
Back: As $L(M)$.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734999643358-->
END%%
%%ANKI
Basic
Let $M$ be a finite automaton. What is $L(M)$ called?
Back: The language of $M$.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734999643364-->
END%%
%%ANKI
Basic
Let $M$ be a finite automaton. What kind of mathematical entity is $L(M)$?
Back: A set (of strings).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734999643370-->
END%%
%%ANKI
Basic
How many strings can a finite automaton potentially accept?
Back: Zero or more.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734999643375-->
END%%
%%ANKI
Basic
How many languages can a finite automaton potentially recognize?
Back: Exactly one.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734999643380-->
END%%
%%ANKI
Basic
Suppose finite automaton $M$ does not accept any strings. What language does it recognize?
Back: $\varnothing$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734999643385-->
END%%
%%ANKI
Basic
What is a regular language?
Back: A language recognized by some finite automaton.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735008834183-->
END%%
%%ANKI
Cloze
A {regular} language is a language {recognized by some finite automaton}.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735008834191-->
END%%
%%ANKI
Basic
What is a nonregular language?
Back: One that exists beyond the capabilities of a finite automaton.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593029-->
END%%
## Determinism
A **deterministic finite automaton** (DFA) is a $5$-tuple $\langle Q, \Sigma, \delta, q_0, F \rangle$, where
3. $\delta \colon Q \times \Sigma \rightarrow Q$ is the **transition function**;
4. $q_0 \in Q$ is the **start state**; and
5. $F \subseteq Q$ is the set of **final states**.
These automaton are typically denoted using a **state diagram** like below. The start state is indicated by an arrow pointing at it from nowhere. An accept state is denoted with a double circle.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1736721887614-->
END%%
%%ANKI
Basic
Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. What kind of mathematical entity is $Q$?
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734999643325-->
END%%
%%ANKI
Cloze
{1:Vertices} are to {2:graphs} whereas {2:states} are to {1:state diagrams}.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Back: $\{w \mid w = \epsilon \lor w \text{ ends with a } 0 \}$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Let $A$ and $B$ be languages. Then the **regular operations** union, intersection, concatenation, and Kleene star are defined as:
* Union: $A \cup B = \{x \mid x \in A \lor x \in B \}$
* Intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$
* Concatenation: $A \circ B = \{ xy \mid x \in A \land y \in B \}$
* Kleene star: $A^* = \{ x_1x_2\cdots x_k \mid k \geq 0 \land x_i \in A \}$
%%ANKI
Basic
Let $A$ and $B$ be languages. How is the union regular operation defined?
Back: As $A \cup B = \{ x \mid x \in A \lor x \in B \}$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593059-->
END%%
%%ANKI
Basic
Let $A$ and $B$ be languages. How is the intersection regular operation defined?
Back: As $A \cap B = \{ x \mid x \in A \land x \in B \}$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593065-->
END%%
%%ANKI
Basic
Let $A$ and $B$ be languages. How is the concatenation regular operation defined?
Back: As $A \circ B = \{ xy \mid x \in A \land y \in B \}$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593071-->
END%%
%%ANKI
Basic
Let $A$ be a language. How is the Kleene star regular operation defined?
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593075-->
END%%
%%ANKI
Basic
Let $A$ and $B$ be languages. How is their union denoted?
Back: $A \cup B$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593080-->
END%%
%%ANKI
Basic
Let $A$ and $B$ be languages. How is their intersection denoted?
Back: $A \cap B$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593085-->
END%%
%%ANKI
Basic
Let $A$ and $B$ be languages. How is their concatenation denoted?
Back: $A \circ B$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593089-->
END%%
%%ANKI
Basic
Let $A$ be a language. How is its Kleene star denoted?
Back: $A^*$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593093-->
END%%
%%ANKI
Basic
Why are the regular operations named the way they are?
Back: Because the set of regular languages is closed under them.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593097-->
END%%
%%ANKI
Basic
Let $A = \{a, b \}$ and $B = \{c, d\}$ be languages. What does $A \cup B$ evaluate to?
Back: $\{a, b, c, d\}$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593102-->
END%%
%%ANKI
Basic
Let $A = \{a, b \}$ and $B = \{c, d\}$ be languages. What does $A \cap B$ evaluate to?
Back: $\varnothing$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593106-->
END%%
%%ANKI
Basic
Let $A = \{a, b \}$ and $B = \{c, d\}$ be languages. What does $A \circ B$ evaluate to?
Back: $\{ac, ad, bc, bd\}$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593113-->
END%%
%%ANKI
Basic
Let $A = \{a, b \}$ be a language. What does $A^*$ evaluate to?
Back: $\{\epsilon, a, b, aa, ab, ba, bb, \ldots\}$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593119-->
END%%
%%ANKI
Basic
Let $A$ be a language. What regular operation is denoted as $A^*$?
Back: The Kleene star.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593126-->
END%%
%%ANKI
Basic
Let $A$ and $B$ be languages. What regular operation is denoted as $A \cup B$?
Back: The union.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593131-->
END%%
%%ANKI
Basic
Let $A$ and $B$ be languages. What regular operation is denoted as $A \cap B$?
Back: The intersection.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1735160593138-->
END%%
%%ANKI
Basic
Let $A$ and $B$ be languages. What regular operation is denoted as $A \circ B$?
Back: The concatenation.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
* Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).