notebook/notes/logic/short-circuit.md

143 lines
5.0 KiB
Markdown
Raw Normal View History

2024-02-12 18:27:16 +00:00
---
title: Short-Circuit
TARGET DECK: Obsidian::STEM
FILE TAGS: logic
tags:
- logic
---
## Overview
The $\textbf{cand}$ and $\textbf{cor}$ operator allows short-circuiting evaluation in the case of undefined ($U$) values.
%%ANKI
Basic
What truth values do short-circuit evaluation operators act on?
Back: $T$, $F$, and $U$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708622-->
END%%
%%ANKI
Basic
What C operator corresponds to $\textbf{cand}$?
Back: `&&`
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
2024-02-23 14:40:31 +00:00
Tags: c17
2024-02-12 18:27:16 +00:00
<!--ID: 1707316606004-->
END%%
%%ANKI
Basic
Why is $\textbf{cand}$ named the way it is?
Back: It is short for **c**onditional **and**.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708625-->
END%%
%%ANKI
Basic
How is $p \textbf{ cand } q$ written as a conditional?
Back: $\textbf{if } p \textbf{ then } q \textbf{ else } F$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708627-->
END%%
%%ANKI
Basic
When can $\textbf{cand}$ evaluate to a non-$U$ value despite being given a $U$ operand?
Back: $F \textbf{ cand } U = F$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708628-->
END%%
%%ANKI
Basic
What C operator corresponds to $\textbf{cor}$?
Back: `||`
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
2024-02-23 14:40:31 +00:00
Tags: c17
2024-02-12 18:27:16 +00:00
<!--ID: 1707316606007-->
END%%
%%ANKI
Basic
Why is $\textbf{cor}$ named the way it is?
Back: It is short for **c**onditional **or**.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708630-->
END%%
%%ANKI
Basic
How is $p \textbf{ cor } q$ written as a conditional?
Back: $\textbf{if } p \textbf{ then } T \textbf{ else } q$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708632-->
END%%
%%ANKI
Basic
When can $\textbf{cor}$ evaluate to a non-$U$ value despite being given a $U$ operand?
Back: $T \textbf{ cor } U = T$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708633-->
END%%
* Associative Laws
* $E1 \textbf{ cand } (E2 \textbf{ cand } E3) = (E1 \textbf{ cand } E2) \textbf{ cand } E3$
* $E1 \textbf{ cor } (E2 \textbf{ cor } E3) = (E1 \textbf{ cor } E2) \textbf{ cor } E3$
%%ANKI
Basic
Which of the short-circuit logical operators do the commutative laws apply to?
Back: Neither of them.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708635-->
END%%
%%ANKI
Basic
Which of the short-circuit logical operators do the associative laws apply to?
Back: $\textbf{cand}$ and $\textbf{cor}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708636-->
END%%
* Distributive Laws
* $E1 \textbf{ cand } (E2 \textbf{ cor } E3) = (E1 \textbf{ cand } E2) \textbf{ cor } (E1 \textbf{ cand } E3)$
* $E1 \textbf{ cor } (E2 \textbf{ cand } E3) = (E1 \textbf{ cor } E2) \textbf{ cand } (E1 \textbf{ cor } E3)$
%%ANKI
Basic
What is the distributive law of e.g. $\textbf{cor}$ over $\textbf{cand}$?
Back: $E1 \textbf{ cor } (E2 \textbf{ cand } E3) = (E1 \textbf{ cor } E2) \textbf{ cand } (E1 \textbf{ cor } E3)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708638-->
END%%
* De Morgan's Laws
* $\neg (E1 \textbf{ cand } E2) = \neg E1 \textbf{ cor } \neg E2$
* $\neg (E1 \textbf{ cor } E2) = \neg E1 \textbf{ cand } \neg E2$
%%ANKI
Basic
Which of the short-circuit logical operators do De Morgan's Laws apply to?
Back: $\textbf{cand}$ and $\textbf{cor}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708640-->
END%%
%%ANKI
Basic
What is De Morgan's Law of e.g. $\textbf{cor}$?
Back: $\neg (E1 \textbf{ cor } E2) = \neg E1 \textbf{ cand } \neg E2$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707317708642-->
END%%
Gries lists other "Laws" but they don't seem as important to note here. What's worth noting is that the other [[equiv-trans#Equivalence Schemas|equivalence schemas]] still apply if we can limit operands to just $T$ and $F$.
## Bibliography
2024-02-12 18:27:16 +00:00
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.