notebook/notes/algorithms/sorting/insertion-sort.md

220 lines
6.4 KiB
Markdown
Raw Normal View History

---
title: Insertion Sort
TARGET DECK: Obsidian::STEM
FILE TAGS: algorithm::sorting
tags:
- algorithm
- sorting
---
## Overview
Property | Value
----------- | --------
Best Case | $\Omega(n)$
Worst Case | $O(n^2)$
Avg. Case | $O(n^2)$
Aux. Memory | $O(1)$
Stable | Yes
Adaptive | Yes
![[insertion-sort.gif]]
2024-02-11 12:33:02 +00:00
%%ANKI
Basic
Describe insertion sort in a single sentence.
Back: Repeatedly put the next record into a sorted array from right to left.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707589393194-->
END%%
%%ANKI
Basic
What is insertion sort's best case runtime?
Back: $\Omega(n)$
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706925879541-->
END%%
%%ANKI
Basic
What input value does insertion sort perform best on?
Back: An already sorted array.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706925921544-->
END%%
%%ANKI
Basic
What is insertion sort's worst case runtime?
Back: $O(n^2)$
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706926586947-->
END%%
%%ANKI
Basic
What input value does insertion sort perform worst on?
Back: An array in reverse-sorted order.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706926586951-->
END%%
%%ANKI
Basic
What is insertion sort's average case runtime?
Back: $O(n^2)$
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707329732933-->
END%%
%%ANKI
Basic
Is insertion sort in place?
Back: Yes
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706926586955-->
END%%
%%ANKI
Basic
Is insertion sort stable?
Back: Yes
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706926586959-->
END%%
%%ANKI
Basic
Is insertion sort adaptive?
Back: Yes
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707504634779-->
END%%
```c
void insertion_sort(const int n, int A[static n]) {
for (int i = 1; i < n; ++i) {
int key = A[i];
int j = i - 1;
for (; j >= 0 && A[j] > key; --j) {
A[j + 1] = A[j];
}
A[j + 1] = key;
}
}
```
%%ANKI
Basic
What sorting algorithm does the following demonstrate?
![[insertion-sort.gif]]
Back: Insertion sort.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707400559085-->
END%%
## Loop Invariant
Consider [[loop-invariant|loop invariant]] $P$ given by
> `A[0..i-1]` consists of the original `A[0..i-1]` elements but in sorted order.
We prove $P$ maintains the requisite properties:
* Initialization
* When `i = 1`, `A[0..0]` contains a single element. This trivially satisfies $P$.
* Maintenance
* Suppose $P$ holds for some `1 ≤ i < n`. Then `A[0..i-1]` consists of the original `A[0..i-1]` elements but in sorted order. On iteration `i + 1`, the nested for loop puts `A[0..i]` in sorted order. At the end of the iteration, `i` is incremented meaning `A[0..i-1]` still satisfies $P$.
* Termination
* The loop ends because `i < n` is no longer true. Then `i = n`. Since $P$ holds, this means `A[0..n-1]`, the entire array, is in sorted order.
%%ANKI
Basic
Given array `A[0..n-1]`, what is insertion sort's loop invariant?
Back: `A[0..i-1]` consists of the original `A[0..i-1]` elements but in sorted order.
<!--ID: 1707332638371-->
END%%
%%ANKI
Basic
What is initialization of insertion sort's loop invariant?
Back: Sorting starts with an singleton array which is trivially sorted.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707332638373-->
END%%
%%ANKI
Basic
What is maintenance of insertion sort's loop invariant?
Back: Each iteration puts the current element into sorted order.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707332638375-->
END%%
%%ANKI
Basic
insertion sort makes fewer {comparisons} than selection sort in the average case.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707500283783-->
END%%
## Analogy
Suppose you have a shuffled deck of playing cards face-down on a table. Start by grabbing a card from the deck with your left hand. For the remainder of the cards, use your right hand to transition the topmost card to the end of your left hand. If the newly placed card isn't in sorted order, move it one position closer to the start. Repeat until it's in sorted order.
If you repeat this process for every card in the deck, your left hand will eventually contain the entire deck in sorted order.
%%ANKI
Basic
What analogy does Cormen et al. use to explain insertion sort?
Back: Sorting a shuffled deck of playing cards.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706927594729-->
END%%
%%ANKI
Basic
What invariant does the left hand maintain in Cormen et al.'s insertion sort analogy?
Back: It contains all drawn cards in sorted order.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1706927594732-->
END%%
%%ANKI
Basic
How does insertion sort partition its input array?
Back:
```
[ sorted | unsorted ]
```
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707399790957-->
END%%
%%ANKI
Basic
How many comparisons does insertion sort typically perform with `x`?
```
[ sorted | x : unsorted ]
```
Back: One plus however many elements in `sorted` are greater than `x`.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707399790958-->
END%%
%%ANKI
Basic
Which element will insertion sort move to `sorted`?
```
[ sorted | unsorted ]
```
Back: The first element of `unsorted`.
Reference: Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).
<!--ID: 1707399790960-->
END%%
## References
* Thomas H. Cormen et al., *Introduction to Algorithms*, 3rd ed (Cambridge, Mass: MIT Press, 2009).