A **directed graph** $G$ is a pair $\langle V, E \rangle$, where $V$ is a finite set and $E$ is a binary relation on $V$. An **undirected graph** $G$ is a pair $\langle V, E \rangle$, where $V$ is a finite set and $E$ is a set of unordered pair of vertices from $V$. In both types of graphs, $V$ is called the **vertex set** of $G$ and $E$ is called the **edge set** of $G$.
%%ANKI
Basic
What two components make up a directed graph?
Back: A vertex set and an edge set.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1710796166566-->
END%%
%%ANKI
Basic
What two components make up an undirected graph?
Back: A vertex set and an edge set.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1710796166569-->
END%%
%%ANKI
Basic
What kind of graph(s) might $G = \langle V, E \rangle$ be?
Back: Directed or undirected.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
A graph that allows multiple edges between vertices is called a **multigraph**. It is analagous to the concept of [[bags|multisets]] in set theory.
%%ANKI
Basic
What is a multigraph?
Back: A graph with multiple edges between any two vertices.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1720360545669-->
END%%
%%ANKI
Cloze
{Multigraphs} are to graph theory as {multisets} are to set theory.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1720360545673-->
END%%
%%ANKI
Basic
Does every multigraph correspond to a graph?
Back: No.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1720360545677-->
END%%
%%ANKI
Basic
Does every graph correspond to a multigraph?
Back: Yes.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1720360545680-->
END%%
%%ANKI
Basic
Under what conditions is a multigraph considered a graph?
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
If $\langle u, v \rangle$ is an edge of a directed graph, we say $\langle u, v \rangle$ is **incident to** $v$ and **incident from** $u$. Furthermore, we say $v$ is **adjacent** to $u$. If $\{u, v\}$ was instead an edge of an undirected graph, we say $\{u, v\}$ is **incident on** $u$ and $v$. Likewise, $v$ is adjacent to $u$ and $u$ is adjacent to $v$.
%%ANKI
Cloze
Let $\langle u, v \rangle$ be an edge of a directed graph. Then {1:$\langle u, v \rangle$} is incident from {1:$u$}.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1710796090873-->
END%%
%%ANKI
Cloze
Let $\langle u, v \rangle$ be an edge of a directed graph. Then {1:$\langle u, v \rangle$} is incident to {1:$v$}.
Reference: Thomas H. Cormen et al., Introduction to Algorithms, Fourth edition (Cambridge, Massachusett: The MIT Press, 2022).
<!--ID: 1710796090885-->
END%%
%%ANKI
Basic
What does it mean for an edge to be incident from vertex $v$?
Back: It invokes imagery of two vertices meeting (i.e. shaking hands).
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Does the handshake lemma apply to undirected graphs or directed graphs?
Back: Both.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
In graph theory, what does the handshake lemma state?
Back: For any graph, the sum of the degree of vertices is twice the number of edges.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1723992099111-->
END%%
%%ANKI
Cloze
For any graph, the {sum of the degree of vertices} is twice the {number of edges}.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
How is the handshake lemma expressed using summation notation?
Back: $\sum_{v \in V} d(v) = 2e$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Consider a graph with the following degree sequence. How many vertices are there? $$\langle 4, 4, 3, 3, 3, 2, 1 \rangle$$
Back: $7$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Consider a graph with the following degree sequence. How many edges are there? $$\langle 4, 4, 3, 3, 3, 2, 1 \rangle$$
Back: $10$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Back: Every edge adds to the degree of two vertices.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Let $G = (V, E)$ be a graph. A **walk** of $G$ is a sequence of vertices such that consecutive vertices in the sequence are adjacent in $G$. More precisely, a walk (of length $k$) from vertex $v_0$ to vertex $v_k$ is a sequence $w = \langle v_0, v_1, \ldots, v_k \rangle$ of vertices such that $(v_{i-1}, v_i) \in E$ for $i = 1, 2, \ldots, k$. We say $v_k$ is **reachable** from $v_0$ via $w$.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1723992099148-->
END%%
%%ANKI
Basic
What are the trails of length $2$ from vertex $2$ to vertex $2$?
A **path** is a trail in which no vertex is repeated (except possibly the first and last). A **cycle** is a path that starts and ends at the same vertex. A graph with no cycles is **acyclic**.
In computer science, a cycle is sometimes required to have more than one edge:
* In a directed graph, path $\langle v_0, v_1, \ldots, v_k \rangle$ is a cycle if $v_0 = v_k$ and the path contains at least one edge.
* In an undirected graph, path $\langle v_0, v_1, \ldots, v_k \rangle$ is a cycle if $v_0 = v_k$ and all edges are distinct.
Back: A trail of $G$ in which no vertex is repeated (except possibly the first and last).
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1723992099142-->
END%%
%%ANKI
Basic
What is a cycle of (say) graph $G$?
Back: A path of $G$ that starts and ends at the same vertex.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1723992829997-->
END%%
%%ANKI
Basic
What is a trivial cycle of (say) graph $G$?
Back: A cycle of length $0$.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1723992830003-->
END%%
%%ANKI
Basic
Which of trails or paths are more general?
Back: Trails.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1723992099152-->
END%%
%%ANKI
Basic
Which of cycles or paths are more general?
Back: Paths.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1723992830005-->
END%%
%%ANKI
Basic
Which of cycles or trails are more general?
Back: Trails.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
An **isomorphism** between two graphs $G_1$ and $G_2$ is a bijection $f \colon V_1 \rightarrow V_2$ between the vertices of the graphs such that $(a, b)$ is an edge in $G_1$ if and only if $(f(a), f(b))$ is an edge in $G_2$. Here parenthesis are used to denote either ordered pairs (for directed graphs) or unordered pairs (for undirected graphs).
We say $G_1$ and $G_2$ are **isomorphic**, denoted $G_1 \cong G_2$, if and only if there exists an isomorphism between $G_1$ and $G_2$.
%%ANKI
Basic
What kind of mathematical object is an isomorphism between graphs?
Back: A function.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715537560168-->
END%%
%%ANKI
Basic
What *kind* of function is an isomorphism between two graphs?
Back: A bijective function.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715537560173-->
END%%
%%ANKI
Basic
What *is* an isomorphism between graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$?
Back: A bijection $f \colon V_1 \rightarrow V_2$ such that $(a, b) \in E_1$ if and only if $(f(a), f(b)) \in E_2$.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715537560176-->
END%%
%%ANKI
Basic
What is the domain of an isomorphism between graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$?
Back: $V_1$.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715537560179-->
END%%
%%ANKI
Basic
What is the codomain of an isomorphism between graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$?
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715537560183-->
END%%
%%ANKI
Basic
What is the edge relation of isomorphism $f$ between graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$?
Back: $(a, b) \in E_1$ if and only if $(f(a), f(b)) \in E_2$.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715537560186-->
END%%
%%ANKI
Basic
What does it mean for graphs $G_1$ and $G_2$ to be isomorphic?
Back: There exists an isomorphism between them.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715537560190-->
END%%
%%ANKI
Basic
If two graphs are equal, are they isomorphic?
Back: Yes.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715537560195-->
END%%
%%ANKI
Basic
If two graphs are isomorphic, are they equal?
Back: Not necessarily.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715537560199-->
END%%
%%ANKI
Basic
Are the following two graphs equal?
![[graph-isomorphic.png]]
Back: No.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715537560203-->
END%%
%%ANKI
Basic
Are the following two graphs isomorphic?
![[graph-isomorphic.png]]
Back: Yes.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715537560207-->
END%%
%%ANKI
Basic
If the following graphs are isomorphic, what is the domain of the isomorphism?
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715537560210-->
END%%
%%ANKI
Basic
If the following graphs are isomorphic, what is the codomain of the isomorphism?
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715537560214-->
END%%
%%ANKI
Basic
What does it mean for two graphs to be equal?
Back: Two graphs are equal if their vertex and edge sets are equal.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Graphs are to {isomorphic} as shapes are to {congruent}.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
We say $G' = (V', E')$ is a **subgraph** of $G = (V, E)$ provided $V' \subseteq V$ and $E' \subseteq E$. We say $G' = (V', E')$ is an **induced subgraph** of $G = (V, E)$ provided $V' \subseteq V$ and every edge in $E$ whose vertices are still in $V'$ is also an edge in $E'$.
%%ANKI
Basic
What *is* a subgraph of $G = (V, E)$?
Back: A graph $G' = (V', E')$ such that $V' \subseteq V$ and $E' \subseteq E$.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715619756612-->
END%%
%%ANKI
Basic
What *is* an induced subgraph of $G = (V, E)$?
Back: A graph $G' = (V', E')$ such that $V' \subseteq V$ and every edge in $E$ whose vertices are in $V'$ is in $E'$.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715619756617-->
END%%
%%ANKI
Basic
Which of subgraphs or induced subgraphs are more general?
Back: Subgraphs.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715619756621-->
END%%
%%ANKI
Basic
Is an induced subgraph a subgraph?
Back: Yes.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715619756626-->
END%%
%%ANKI
Basic
Is a subgraph an induced subgraph?
Back: Not necessarily.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715619756630-->
END%%
%%ANKI
Basic
How can deletion be used to create a subgraph from a graph?
Back: By deleting vertices (with connected edges) as well as any additional edges.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715619756634-->
END%%
%%ANKI
Basic
How can deletion be used to create an induced subgraph from a graph?
Back: By only deleting vertices and their connected edges.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715619756637-->
END%%
%%ANKI
Basic
Is the second graph a subgraph of the first?
![[graph-induced-subgraph.png]]
Back: Yes.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715620447931-->
END%%
%%ANKI
Basic
Is the second graph an induced subgraph of the first?
![[graph-induced-subgraph.png]]
Back: Yes.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715620447935-->
END%%
%%ANKI
Basic
Is the second graph a subgraph of the first?
![[graph-subgraph.png]]
Back: Yes.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715620447939-->
END%%
%%ANKI
Basic
Is the second graph an induced subgraph of the first?
![[graph-subgraph.png]]
Back: No.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715620447942-->
END%%
%%ANKI
Basic
Why isn't the second graph an induced subgraph of the first?
![[graph-subgraph.png]]
Back: The second graph is missing edge $\{a, b\}$.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715620447946-->
END%%
%%ANKI
Basic
Is the second graph a subgraph of the first?
![[graph-non-subgraph.png]]
Back: No.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715620447949-->
END%%
%%ANKI
Basic
Why isn't the second graph a subgraph of the first?
![[graph-non-subgraph.png]]
Back: Edge $\{c, f\}$ is not in the first graph.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715620447952-->
END%%
%%ANKI
Basic
Is the second graph an induced subgraph of the first?
![[graph-non-subgraph.png]]
Back: No.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1715620447955-->
END%%
%%ANKI
Basic
Why isn't the second graph an induced subgraph of the first?
![[graph-non-subgraph.png]]
Back: Because the second graph isn't even a subgraph of the first.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
* Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).