notebook/notes/logic/equiv-trans.md

400 lines
13 KiB
Markdown
Raw Normal View History

---
title: Equivalence Transformation
TARGET DECK: Obsidian::STEM
FILE TAGS: programming::equiv-trans
tags:
- equiv-trans
- logic
- programming
---
## Overview
**Equivalence-transformation** refers to a class of calculi for [[prop-logic|propositional logic]] derived from negation ($\neg$), conjunction ($\land$), disjunction ($\lor$), implication ($\Rightarrow$), and equality ($=$).
Gries covers two in "The Science of Programming": a system of evaluation and a formal system. The system of evaluation mirrors how a computer processes instructions, at least in an abstract sense. The formal system serves as a theoretical framework for reasoning about propositions and their transformations without resorting to "lower-level" operations like substitution.
%%ANKI
Basic
Who is the author of "The Science of Programming"?
Back: David Gries
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861286-->
END%%
%%ANKI
Cloze
Gries replaces logical operator {$\Leftrightarrow$} in favor of {$=$}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861295-->
END%%
%%ANKI
Basic
What Lean theorem justifies Gries' choice of $=$ over $\Leftrightarrow$?
Back: `propext`
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
Tags: lean
<!--ID: 1706994861302-->
END%%
%%ANKI
Basic
What are the two calculi Gries describes equivalence-transformation with?
Back: A formal system and a system of evaluation.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673342-->
END%%
## Equivalence Schemas
A proposition is said to be a **tautology** if it evaluates to $T$ in every state it is well-defined in. We say propositions $E1$ and $E2$ are **equivalent** if $E1 = E2$ is a tautology. In this case, we say $E1 = E2$ is an **equivalence**.
%%ANKI
Basic
What does it mean for a proposition to be a tautology?
Back: That the proposition is true in every state it is well-defined in.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861323-->
END%%
%%ANKI
Basic
How is tautology $e$ written equivalently with a quantifier?
Back: For free identifiers $i_1, \ldots, i_n$ in $e$, as $\forall (i_1, \ldots, i_n), e$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707937867032-->
END%%
%%ANKI
Basic
The term "equivalent" refers to a comparison between what two objects?
Back: Expressions.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673345-->
END%%
%%ANKI
Basic
What does it mean for two propositions to be equivalent?
Back: Given propositions $E1$ and $E2$, it means $E1 = E2$ is a tautology.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673347-->
END%%
%%ANKI
Basic
What is an equivalence?
Back: Given propositions $E1$ and $E2$, tautology $E1 = E2$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673348-->
END%%
* Commutative Laws
* $(E1 \land E2) = (E2 \land E1)$
* $(E1 \lor E2) = (E2 \lor E1)$
* $(E1 = E2) = (E2 = E1)$
%%ANKI
Basic
Which of the basic logical operators do the commutative laws apply to?
Back: $\land$, $\lor$, and $=$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673350-->
END%%
%%ANKI
Basic
What do the commutative laws allow us to do?
Back: Reorder operands.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673351-->
END%%
%%ANKI
Basic
What is the commutative law of e.g. $\land$?
Back: $E1 \land E2 = E2 \land E1$
<!--ID: 1707251673353-->
END%%
* Associative Laws
* $E1 \land (E2 \land E3) = (E1 \land E2) \land E3$
* $E1 \lor (E2 \lor E3) = (E1 \lor E2) \lor E3$
%%ANKI
Basic
Which of the basic logical operators do the associative laws apply to?
Back: $\land$ and $\lor$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673354-->
END%%
%%ANKI
Basic
What do the associative laws allow us to do?
Back: Remove parentheses.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673355-->
END%%
%%ANKI
Basic
What is the associative law of e.g. $\land$?
Back: $E1 \land (E2 \land E3) = (E1 \land E2) \land E3$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673357-->
END%%
* Distributive Laws
* $E1 \lor (E2 \land E3) = (E1 \lor E2) \land (E1 \lor E3)$
* $E1 \land (E2 \lor E3) = (E1 \land E2) \lor (E1 \land E3)$
%%ANKI
Basic
Which of the basic logical operators do the distributive laws apply to?
Back: $\land$ and $\lor$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673358-->
END%%
%%ANKI
Basic
What do the distributive laws allow us to do?
Back: "Factor" propositions.
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673360-->
END%%
%%ANKI
Basic
What is the distributive law of e.g. $\land$ over $\lor$?
Back: $E1 \land (E2 \lor E3) = (E1 \land E2) \lor (E1 \land E3)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673361-->
END%%
* De Morgan's Laws
* $\neg (E1 \land E2) = \neg E1 \lor \neg E2$
* $\neg (E1 \lor E2) = \neg E1 \land \neg E2$
%%ANKI
Basic
Which of the basic logical operators do De Morgan's Laws apply to?
Back: $\neg$, $\land$, and $\lor$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673363-->
END%%
%%ANKI
Basic
What is De Morgan's Law of e.g. $\land$?
Back: $\neg (E1 \land E2) = \neg E1 \lor \neg E2$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673364-->
END%%
* Law of Negation
* $\neg (\neg E1) = E1$
%%ANKI
Basic
What does the Law of Negation say?
Back: $\neg (\neg E1) = E1$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673365-->
END%%
* Law of the Excluded Middle
* $E1 \lor \neg E1 = T$
%%ANKI
Basic
Which of the basic logical operators does the Law of the Excluded Middle apply to?
Back: $\lor$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673367-->
END%%
%%ANKI
Basic
What does the Law of the Excluded Middle say?
Back: $E1 \lor \neg E1 = T$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673368-->
END%%
%%ANKI
Basic
Which equivalence schema is "refuted" by sentence, "This sentence is false."
Back: Law of the Excluded Middle
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251779153-->
END%%
* Law of Contradiction
* $E1 \land \neg E1 = F$
%%ANKI
Basic
Which of the basic logical operators does the Law of Contradiction apply to?
Back: $\land$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673370-->
END%%
%%ANKI
Basic
What does the Law of Contradiction say?
Back: $E1 \land \neg E1 = F$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673371-->
END%%
%%ANKI
Cloze
The Law of {1:the Excluded Middle} is to {2:$\lor$} whereas the Law of {2:Contradiction} is to {1:$\land$}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707251673373-->
END%%
Gries lists other "Laws" but they don't seem as important to note here.
%%ANKI
Basic
How is $\Rightarrow$ written in terms of other logical operators?
Back: $p \Rightarrow q$ is equivalent to $\neg p \lor q$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861358-->
END%%
%%ANKI
Basic
How is $\Leftrightarrow$/$=$ written in terms of other logical operators?
Back: $p \Leftrightarrow q$ is equivalent to $(p \Rightarrow q) \land (q \Rightarrow p)$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1706994861360-->
END%%
%%ANKI
Basic
What distinguishes an equality from an equivalence?
Back: An equivalence is an equality that is also a tautology.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178709-->
END%%
## Equivalence Rules
* Rule of Substitution
* Let $P(r)$ be a predicate and $E1 = E2$ be an equivalence. Then $P(E1) = P(E2)$ is an equivalence.
* Rule of Transitivity
* Let $E1 = E2$ and $E2 = E3$ be equivalences. Then $E1 = E3$ is an equivalence.
%%ANKI
Basic
What two inference rules make up the equivalence-transformation formal system?
Back: Substitution and transitivity.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707253246450-->
END%%
%%ANKI
Basic
Which of the two inference rules that make up the equivalence-transformation formal system is redundant?
Back: Transitivity.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707432641598-->
END%%
%%ANKI
Basic
What does the rule of substitution say in the system of evaluation?
Back: Let $P(r)$ be a predicate and $E1 = E2$ be an equivalence. Then $P(E1) = P(E2)$ is an equivalence.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707253246452-->
END%%
%%ANKI
Basic
How is the rule of substitution written as an inference rule (in standard form)?
Back:
$$
\begin{matrix}
E1 = E2 \\
\hline P(E1) = P(E2)
\end{matrix}
$$
<!--ID: 1707253246454-->
END%%
%%ANKI
Basic
What does the rule of transitivity state in the system of evaluation?
Back: Let $E1 = E2$ and $E2 = E3$. Then $E1 = E3$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707253246455-->
END%%
%%ANKI
Basic
How is the rule of transitivity written as an inference rule (in standard form)?
Back:
$$
\begin{matrix}
E1 = E2, E2 = E3 \\
\hline E1 = E3
\end{matrix}
$$
<!--ID: 1707253246457-->
END%%
%%ANKI
Cloze
The system of evaluation has {equivalences} whereas the formal system has {theorems}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707253246458-->
END%%
%%ANKI
Basic
What is a "theorem" in the equivalence-transformation formal system?
Back: An equivalence derived from the axioms and inference rules.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178712-->
END%%
%%ANKI
Basic
How is e.g. the Law of Implication proven in the system of evaluation?
Back: With truth tables
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178714-->
END%%
%%ANKI
Basic
How is e.g. the Law of Implication proven in the formal system?
Back: It isn't. It is an axiom.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178715-->
END%%
%%ANKI
Cloze
The system of evaluation and formal system are connected by the following biconditional: {$e$ is a tautology} iff {$e = T$ is a theorem}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316178717-->
END%%
%%ANKI
Cloze
The {1:system of evaluation} is to {2:"$e$ is a tautology"} whereas the {2:formal system} is to {1:"$e = T$ is a theorem"}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1707316276203-->
END%%
## Bibliography
* Avigad, Jeremy. Theorem Proving in Lean, n.d.
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.