547 lines
18 KiB
Markdown
547 lines
18 KiB
Markdown
|
---
|
|||
|
title: Equivalence Transformation
|
|||
|
TARGET DECK: Obsidian::STEM
|
|||
|
FILE TAGS: programming::equiv-trans
|
|||
|
tags:
|
|||
|
- equiv-trans
|
|||
|
- logic
|
|||
|
- programming
|
|||
|
---
|
|||
|
|
|||
|
## Overview
|
|||
|
|
|||
|
**Equivalence-transformation** refers to a class of calculi for [[propositional|propositional logic]] derived from negation ($\neg$), conjunction ($\land$), disjunction ($\lor$), implication ($\Rightarrow$), and equality ($=$). Gries covers two in "The Science of Programming": a system of evaluation and a formal system. The system of evaluation mirrors how a computer processes instructions, at least in an abstract sense. The formal system serves as a theoretical framework for reasoning about propositions and their transformations without resorting to "lower-level" operations like substitution.
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Who is the author of "The Science of Programming"?
|
|||
|
Back: David Gries
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861286-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What are constant propositions?
|
|||
|
Back: Propositions that contain only constants as operands.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707422675517-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Cloze
|
|||
|
Gries replaces logical operator {$\Leftrightarrow$} in favor of {$=$}.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861295-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How does Lean define propositional equality?
|
|||
|
Back: Expressions `a` and `b` are propositionally equal iff `a = b` is true.
|
|||
|
Reference: Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
|||
|
Tags: lean
|
|||
|
<!--ID: 1706994861298-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How does Lean define `propext`?
|
|||
|
Back:
|
|||
|
```lean
|
|||
|
axiom propext {a b : Prop} : (a ↔ b) → (a = b)
|
|||
|
```
|
|||
|
Reference: Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
|||
|
Tags: lean
|
|||
|
<!--ID: 1706994861300-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What Lean theorem justifies Gries' choice of $=$ over $\Leftrightarrow$?
|
|||
|
Back: `propext`
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
Tags: lean
|
|||
|
<!--ID: 1706994861302-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Is $(b \land c)$ well-defined in $\{(b, T), (c, F)\}$?
|
|||
|
Back: Yes.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861318-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Is $(b \lor d)$ well-defined in $\{(b, T), (c, F)\}$?
|
|||
|
Back: No.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861320-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What proposition represents states $\{(b, T)\}$ and $\{(c, F)\}$?
|
|||
|
Back: $b \lor \neg c$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861337-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What set of states does $a \land b$ represent?
|
|||
|
Back: The set containing just state $\{(a, T), (b, T)\}$.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861339-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is sloppy about phrase "the states in $b \lor \neg c$"?
|
|||
|
Back: $b \lor \neg c$ is not a set but a representation of a set (of states).
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861341-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is the weakest proposition?
|
|||
|
Back: $T$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861348-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What set of states does $T$ represent?
|
|||
|
Back: The set of all states.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861350-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is the strongest proposition?
|
|||
|
Back: $F$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861352-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What set of states does $F$ represent?
|
|||
|
Back: The set of no states.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861354-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What does a proposition *represent*?
|
|||
|
Back: The set of states in which it is true.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861335-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
When is $p$ stronger than $q$?
|
|||
|
Back: When $p \Rightarrow q$.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861343-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
When is $p$ weaker than $q$?
|
|||
|
Back: When $q \Rightarrow p$.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861346-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
A proposition is well-defined with respect to what?
|
|||
|
Back: A state to evaluate against.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861316-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Why is $b \land c$ stronger than $b \lor c$?
|
|||
|
Back: The former represents a subset of the states the latter represents.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861356-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is a state?
|
|||
|
Back: A function mapping identifiers to values.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861314-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What are the two calculi Gries describes equivalence-transformation with?
|
|||
|
Back: A formal system and a system of evaluation.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673342-->
|
|||
|
END%%
|
|||
|
|
|||
|
## Equivalence Schemas
|
|||
|
|
|||
|
A proposition is said to be a **tautology** if it evaluates to $T$ in every state it is well-defined in. We say propositions $E1$ and $E2$ are **equivalent** if $E1 = E2$ is a tautology. In this case, we say $E1 = E2$ is an **equivalence**.
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What does it mean for a proposition to be a tautology?
|
|||
|
Back: That the proposition is true in every state it is well-defined in.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861323-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How is tautology $e$ written equivalently with a quantifier?
|
|||
|
Back: For free identifiers $i_1, \ldots, i_n$ in $e$, as $\forall (i_1, \ldots, i_n), e$.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707937867032-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
The term "equivalent" refers to a comparison between what two objects?
|
|||
|
Back: Expressions.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673345-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What does it mean for two propositions to be equivalent?
|
|||
|
Back: Given propositions $E1$ and $E2$, it means $E1 = E2$ is a tautology.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673347-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is an equivalence?
|
|||
|
Back: Given propositions $E1$ and $E2$, tautology $E1 = E2$.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673348-->
|
|||
|
END%%
|
|||
|
|
|||
|
* Commutative Laws
|
|||
|
* $(E1 \land E2) = (E2 \land E1)$
|
|||
|
* $(E1 \lor E2) = (E2 \lor E1)$
|
|||
|
* $(E1 = E2) = (E2 = E1)$
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Which of the basic logical operators do the commutative laws apply to?
|
|||
|
Back: $\land$, $\lor$, and $=$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673350-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What do the commutative laws allow us to do?
|
|||
|
Back: Reorder operands.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673351-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is the commutative law of e.g. $\land$?
|
|||
|
Back: $E1 \land E2 = E2 \land E1$
|
|||
|
<!--ID: 1707251673353-->
|
|||
|
END%%
|
|||
|
|
|||
|
* Associative Laws
|
|||
|
* $E1 \land (E2 \land E3) = (E1 \land E2) \land E3$
|
|||
|
* $E1 \lor (E2 \lor E3) = (E1 \lor E2) \lor E3$
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Which of the basic logical operators do the associative laws apply to?
|
|||
|
Back: $\land$ and $\lor$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673354-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What do the associative laws allow us to do?
|
|||
|
Back: Remove parentheses.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673355-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is the associative law of e.g. $\land$?
|
|||
|
Back: $E1 \land (E2 \land E3) = (E1 \land E2) \land E3$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673357-->
|
|||
|
END%%
|
|||
|
|
|||
|
* Distributive Laws
|
|||
|
* $E1 \lor (E2 \land E3) = (E1 \lor E2) \land (E1 \lor E3)$
|
|||
|
* $E1 \land (E2 \lor E3) = (E1 \land E2) \lor (E1 \land E3)$
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Which of the basic logical operators do the distributive laws apply to?
|
|||
|
Back: $\land$ and $\lor$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673358-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What do the distributive laws allow us to do?
|
|||
|
Back: "Factor" propositions.
|
|||
|
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673360-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is the distributive law of e.g. $\land$ over $\lor$?
|
|||
|
Back: $E1 \land (E2 \lor E3) = (E1 \land E2) \lor (E1 \land E3)$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673361-->
|
|||
|
END%%
|
|||
|
|
|||
|
* De Morgan's Laws
|
|||
|
* $\neg (E1 \land E2) = \neg E1 \lor \neg E2$
|
|||
|
* $\neg (E1 \lor E2) = \neg E1 \land \neg E2$
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Which of the basic logical operators do De Morgan's Laws apply to?
|
|||
|
Back: $\neg$, $\land$, and $\lor$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673363-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is De Morgan's Law of e.g. $\land$?
|
|||
|
Back: $\neg (E1 \land E2) = \neg E1 \lor \neg E2$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673364-->
|
|||
|
END%%
|
|||
|
|
|||
|
* Law of Negation
|
|||
|
* $\neg (\neg E1) = E1$
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What does the Law of Negation say?
|
|||
|
Back: $\neg (\neg E1) = E1$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673365-->
|
|||
|
END%%
|
|||
|
|
|||
|
* Law of the Excluded Middle
|
|||
|
* $E1 \lor \neg E1 = T$
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Which of the basic logical operators does the Law of the Excluded Middle apply to?
|
|||
|
Back: $\lor$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673367-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What does the Law of the Excluded Middle say?
|
|||
|
Back: $E1 \lor \neg E1 = T$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673368-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Which equivalence schema is "refuted" by sentence, "This sentence is false."
|
|||
|
Back: Law of the Excluded Middle
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251779153-->
|
|||
|
END%%
|
|||
|
|
|||
|
* Law of Contradiction
|
|||
|
* $E1 \land \neg E1 = F$
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Which of the basic logical operators does the Law of Contradiction apply to?
|
|||
|
Back: $\land$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673370-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What does the Law of Contradiction say?
|
|||
|
Back: $E1 \land \neg E1 = F$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673371-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Cloze
|
|||
|
The Law of {1:the Excluded Middle} is to {2:$\lor$} whereas the Law of {2:Contradiction} is to {1:$\land$}.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707251673373-->
|
|||
|
END%%
|
|||
|
|
|||
|
Gries lists other "Laws" but they don't seem as important to note here.
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How is $\Rightarrow$ written in terms of other logical operators?
|
|||
|
Back: $p \Rightarrow q$ is equivalent to $\neg p \lor q$.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861358-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How is $\Leftrightarrow$/$=$ written in terms of other logical operators?
|
|||
|
Back: $p \Leftrightarrow q$ is equivalent to $(p \Rightarrow q) \land (q \Rightarrow p)$.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861360-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What distinguishes an equality from an equivalence?
|
|||
|
Back: An equivalence is an equality that is also a tautology.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707316178709-->
|
|||
|
END%%
|
|||
|
|
|||
|
## Equivalence Rules
|
|||
|
|
|||
|
* Rule of Substitution
|
|||
|
* Let $P(r)$ be a predicate and $E1 = E2$ be an equivalence. Then $P(E1) = P(E2)$ is an equivalence.
|
|||
|
* Rule of Transitivity
|
|||
|
* Let $E1 = E2$ and $E2 = E3$ be equivalences. Then $E1 = E3$ is an equivalence.
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What two inference rules make up the equivalence-transformation formal system?
|
|||
|
Back: Substitution and transitivity.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707253246450-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Which of the two inference rules that make up the equivalence-transformation formal system is redundant?
|
|||
|
Back: Transitivity.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707432641598-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What does the rule of substitution say in the system of evaluation?
|
|||
|
Back: Let $P(r)$ be a predicate and $E1 = E2$ be an equivalence. Then $P(E1) = P(E2)$ is an equivalence.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707253246452-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How is the rule of substitution written as an inference rule (in standard form)?
|
|||
|
Back:
|
|||
|
$$
|
|||
|
\begin{matrix}
|
|||
|
E1 = E2 \\
|
|||
|
\hline P(E1) = P(E2)
|
|||
|
\end{matrix}
|
|||
|
$$
|
|||
|
<!--ID: 1707253246454-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What does the rule of transitivity state in the system of evaluation?
|
|||
|
Back: Let $E1 = E2$ and $E2 = E3$. Then $E1 = E3$.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707253246455-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How is the rule of transitivity written as an inference rule (in standard form)?
|
|||
|
Back:
|
|||
|
$$
|
|||
|
\begin{matrix}
|
|||
|
E1 = E2, E2 = E3 \\
|
|||
|
\hline E1 = E3
|
|||
|
\end{matrix}
|
|||
|
$$
|
|||
|
<!--ID: 1707253246457-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Cloze
|
|||
|
The system of evaluation has {equivalences} whereas the formal system has {theorems}.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707253246458-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is a "theorem" in the equivalence-transformation formal system?
|
|||
|
Back: An equivalence derived from the axioms and inference rules.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707316178712-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How is e.g. the Law of Implication proven in the system of evaluation?
|
|||
|
Back: With truth tables
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707316178714-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How is e.g. the Law of Implication proven in the formal system?
|
|||
|
Back: It isn't. It is an axiom.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707316178715-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Cloze
|
|||
|
The system of evaluation and formal system are connected by the following biconditional: {$e$ is a tautology} iff {$e = T$ is a theorem}.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707316178717-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Cloze
|
|||
|
The {1:system of evaluation} is to {2:"$e$ is a tautology"} whereas the {2:formal system} is to {1:"$e = T$ is a theorem"}.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707316276203-->
|
|||
|
END%%
|
|||
|
|
|||
|
## Bibliography
|
|||
|
|
|||
|
* Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
|||
|
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|