We say set $A$ is **equinumerous** to set $B$, written ($A \approx B$) if and only if there exists a [[set/functions#Injections|one-to-one]] function from $A$ [[set/functions#Surjections|onto]] $B$.
* if $A \approx B$ and $B \approx C$, then $A \approx C$.
Notice though that $\{ \langle A, B \rangle \mid A \approx B \}$ is *not* an equivalence relation since the equivalence concept of equinumerosity concerns *all* sets.
%%ANKI
Basic
Concisely state the equivalence concept of equinumerosity in Zermelo-Fraenkel set theory.
Back: For all sets $A$, $B$, and $C$:
* $A \approx A$;
* $A \approx B \Rightarrow B \approx A$;
* $A \approx B \land B \approx C \Rightarrow A \approx C$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060370-->
END%%
%%ANKI
Basic
Concisely state the equivalence concept of equinumerosity in von Neumann-Bernays set theory.
Back: Class $\{ \langle A, B \rangle \mid A \approx B \}$ is reflexive on the class of all sets, symmetric, and transitive.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060374-->
END%%
%%ANKI
Basic
What is the reflexive property of equinumerosity in FOL?
Back: $\forall A, A \approx A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060379-->
END%%
%%ANKI
Basic
What is the symmetric property of equinumerosity in FOL?
Back: $\forall A, B, A \approx B \Rightarrow B \approx A$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060383-->
END%%
%%ANKI
Basic
What is the transitive property of equinumerosity in FOL?
Back: $\forall A, B, C, A \approx B \land B \approx C \Rightarrow A \approx C$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060387-->
END%%
%%ANKI
Basic
Is $\{ \langle A, B \rangle \mid A \approx B \}$ a set?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060390-->
END%%
%%ANKI
Basic
*Why* isn't $\{ \langle A, B \rangle \mid A \approx B \}$ a set?
Back: Because then the field of this "relation" would be a set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060394-->
END%%
%%ANKI
Basic
Is $\{ \langle A, B \rangle \mid A \approx B \}$ an equivalence relation?
Back: No.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1732295060398-->
END%%
%%ANKI
Basic
*Why* isn't $\{ \langle A, B \rangle \mid A \approx B \}$ an equivalence relation?
Back: Because then the field of this "relation" would be a set.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
If one set $A$ of cardinality $\kappa$ is finite, then all of them are. In this case $\kappa$ is a **finite cardinal**. Otherwise $\kappa$ is an **infinite cardinal**.
%%ANKI
Basic
How many sets $A$ exist such that $\mathop{\text{card}} A = 0$?
Back: $1$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315442-->
END%%
%%ANKI
Basic
How many sets $A$ exist such that $\mathop{\text{card}} A = n^+$ for some $n \in \omega$?
Back: An infinite many.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315447-->
END%%
%%ANKI
Basic
Let $n \in \omega$. When is $\{X \mid \mathop{\text{card}} X = n\}$ a set?
Back: When $n = 0$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315450-->
END%%
%%ANKI
Basic
Let $n \in \omega$. When is $\{X \mid \mathop{\text{card}} X = n\}$ a class?
Back: Always.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315453-->
END%%
%%ANKI
Basic
What class can we construct to prove $\{X \mid \mathop{\text{card}} X = 1\}$ is not a set?
Back: $\bigcup\, \{\{X\} \mid X \text{ is a set} \}$, i.e. the union of all singleton sets.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315456-->
END%%
%%ANKI
Basic
What is a finite cardinal?
Back: A cardinal number equal to $\mathop{\text{card}} A$ for some finite set $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315459-->
END%%
%%ANKI
Basic
What is an infinite cardinal?
Back: A cardinal number equal to $\mathop{\text{card}} A$ for some infinite set $A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315461-->
END%%
%%ANKI
Basic
The finite cardinals are exactly what more basic set?
Back: $\omega$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315464-->
END%%
%%ANKI
Basic
What set does $\aleph_0$ refer to?
Back: $\mathop{\text{card}} \omega$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315466-->
END%%
%%ANKI
Basic
What is the "smallest" infinite cardinal?
Back: $\aleph_0$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315469-->
END%%
%%ANKI
Basic
Let $C \subseteq A$ where $A \approx n$ for some $n \in \omega$. What does $\mathop{\text{card}} C$ evaluate to?
Back: A natural number $m$ such that $m \underline{\in} n$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315471-->
END%%
%%ANKI
Basic
Let $C \subset A$ where $A \approx n$ for some $n \in \omega$. What does $\mathop{\text{card}} C$ evaluate to?
Back: A natural number $m$ such that $m \in n$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315474-->
END%%
%%ANKI
Basic
How is proposition "any subset of a finite set is finite" expressed in FOL?
Back: $\forall n \in \omega, \forall A \approx n, \forall B \subseteq A, \exists m \in n, B \approx m$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315477-->
END%%
%%ANKI
Basic
How is the following more succinctly stated? $$\forall n \in \omega, \forall A \approx n, \forall B \subseteq A, \exists m \in n, B \approx m$$
Back: Any subset of a finite set is finite.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675315479-->
END%%
%%ANKI
Basic
Suppose sets $A$ and $B$ are finite. When is $A \cup B$ infinite?
Back: The union of two finite sets is always finite.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675522739-->
END%%
%%ANKI
Basic
Let $m, n \in \omega$ s.t. $A \approx m$ and $B \approx n$. What is the largest value $\mathop{\text{card}}(A \cup B)$ can evaluate to?
Back: $m + n$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733693785274-->
END%%
%%ANKI
Basic
Let $m, n \in \omega$ s.t. $A \approx m$ and $B \approx n$. What is the smallest value $\mathop{\text{card}}(A \cup B)$ can evaluate to?
Back: $\mathop{\text{max}}(m, n)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733693785281-->
END%%
%%ANKI
Basic
Let $m, n \in \omega$ s.t. $A \approx m$ and $B \approx n$. When does $\mathop{\text{card}}(A \cup B) = m + n$?
Back: When $A$ and $B$ are disjoint.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733693785284-->
END%%
%%ANKI
Basic
Let $m, n \in \omega$ s.t. $A \approx m$ and $B \approx n$. When does $\mathop{\text{card}}(A \cup B) = m$?
Back: When $B \subseteq A$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733693785287-->
END%%
%%ANKI
Basic
Suppose sets $A$ and $B$ are finite. When is $A \cap B$ finite?
Back: The intersection of two finite sets is always finite.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675522748-->
END%%
%%ANKI
Basic
Let $m, n \in \omega$ s.t. $A \approx m$ and $B \approx n$. What is the largest value $\mathop{\text{card}}(A \cap B)$ can evaluate to?
Back: $\mathop{\text{min}}(m, n)$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733693785290-->
END%%
%%ANKI
Basic
Let $m, n \in \omega$ s.t. $A \approx m$ and $B \approx n$. What is the smallest value $\mathop{\text{card}}(A \cap B)$ can evaluate to?
Back: $0$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733693785292-->
END%%
%%ANKI
Basic
Suppose sets $A$ and $B$ are finite. When is $A \times B$ finite?
Back: The Cartesian product of two finite sets is always finite.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733675522751-->
END%%
%%ANKI
Basic
Let $m, n \in \omega$ such that $A \approx m$ and $B \approx n$. What does $\mathop{\text{card}}(A \times B)$ evaluate to?
Back: $m \cdot n$
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733693785295-->
END%%
### Addition
Let $\kappa$ and $\lambda$ be any cardinal numbers. Then $\kappa + \lambda = \mathop{\text{card}}(K \cup L)$, where $K$ and $L$ are any disjoint sets of cardinality $\kappa$ and $\lambda$, respectively.
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be any cardinal numbers. How is $\kappa + \lambda$ defined?
Back: As $\mathop{\text{card}}(K \cup L)$ where $K$ and $L$ are disjoint sets with cardinality $\kappa$ and $\lambda$, respectively.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733710439132-->
END%%
%%ANKI
Basic
Let $K$ and $L$ be sets. How is $\mathop{\text{card}}(K \cup L)$ expressed in terms of cardinal numbers?
Back: N/A. $K$ and $L$ must be *disjoint* sets for this to make sense.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733710439139-->
END%%
%%ANKI
Basic
Let $K$ and $L$ be disjoint sets. How is $\mathop{\text{card}}(K \cup L)$ expressed in terms of cardinal numbers?
Back: As $\kappa + \lambda$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733710439142-->
END%%
%%ANKI
Basic
Let $K \approx \kappa$ and $L \approx \lambda$. What is necessary for $\mathop{\text{card}}(K \cup L) \approx \kappa + \lambda$?
Back: That $K$ and $L$ are disjoint.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733710439146-->
END%%
%%ANKI
Cloze
{Addition} of cardinal numbers is defined in terms of the {union} of sets.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733710439150-->
END%%
### Multiplication
Let $\kappa$ and $\lambda$ be any cardinal numbers. Then $\kappa \cdot \lambda = \mathop{\text{card}}(K \times L)$, where $K$ and $L$ are any sets of cardinality $\kappa$ and $\lambda$, respectively.
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be any cardinal numbers. How is $\kappa \cdot \lambda$ defined?
Back: As $\mathop{\text{card}}(K \times L)$ where $K$ and $L$ are sets with cardinality $\kappa$ and $\lambda$, respectively.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733710439153-->
END%%
%%ANKI
Basic
Let $K$ and $L$ be sets. How is $\mathop{\text{card}}(K \times L)$ expressed in terms of cardinal numbers?
Back: As $\kappa \cdot \lambda$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733710439156-->
END%%
%%ANKI
Basic
Let $K \approx \kappa$ and $L \approx \lambda$. What is necessary for $\mathop{\text{card}}(K \times L) \approx \kappa \cdot \lambda$?
Back: N/A. This is true by definition.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733710439159-->
END%%
%%ANKI
Cloze
{Multiplication} of cardinal numbers is defined in terms of the {Cartesian product} of sets.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733710439162-->
END%%
### Exponentiation
Let $\kappa$ and $\lambda$ be any cardinal numbers. Then $\kappa^\lambda = \mathop{\text{card}}(^LK)$, where $K$ and $L$ are any sets of cardinality $\kappa$ and $\lambda$, respectively.
%%ANKI
Basic
Let $\kappa$ and $\lambda$ be any cardinal numbers. How is $\kappa^\lambda$ defined?
Back: As $\mathop{\text{card}}(^LK)$ where $K$ and $L$ are sets with cardinality $\kappa$ and $\lambda$, respectively.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733710439165-->
END%%
%%ANKI
Basic
Let $K$ and $L$ be sets. How is $\mathop{\text{card}}(^LK)$ expressed in terms of cardinal numbers?
Back: As $\kappa^\lambda$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733710439168-->
END%%
%%ANKI
Basic
Let $K$ and $L$ be sets. How is $\mathop{\text{card}}(^KL)$ expressed in terms of cardinal numbers?
Back: As $\lambda^\kappa$ where $\kappa = \mathop{\text{card}} K$ and $\lambda = \mathop{\text{card}} L$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733710755119-->
END%%
%%ANKI
Basic
Let $K \approx \kappa$ and $L \approx \lambda$. What is necessary for $\mathop{\text{card}}(^LK) \approx \kappa^\lambda$?
Back: N/A. This is true by definition.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!--ID: 1733710439171-->
END%%
%%ANKI
Cloze
{Exponentiation} of cardinal numbers is defined in terms of the {set of functions} between sets.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).