2024-02-09 16:07:56 +00:00
---
title: Quantification
TARGET DECK: Obsidian::STEM
FILE TAGS: logic::quantification
tags:
- logic
- quantification
---
## Overview
2024-02-11 19:05:17 +00:00
A **quantifier** refers to an operator that specifies how many members of a set satisfy some formula. The most common quantifiers are $\exists$ and $\forall$, though others (such as the counting quantifier) are also used.
%%ANKI
Basic
What are the most common first-order logic quantifiers?
Back: $\exists$ and $\forall$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707674796763 -->
END%%
%%ANKI
Basic
What term refers to operators like $\exists$ and $\forall$?
Back: Quantifiers.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707674796766 -->
END%%
* **Existential quantification** ($\exists$) asserts the existence of at least one member in a set satisfying a property.
2024-02-09 16:07:56 +00:00
%%ANKI
Basic
What symbol denotes existential quantification?
Back: $\exists$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494819964 -->
END%%
%%ANKI
Basic
2024-03-15 17:58:15 +00:00
How many members in the domain of discourse must satisfy a property in existential quantification?
2024-02-09 16:07:56 +00:00
Back: At least one.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494819967 -->
END%%
%%ANKI
Basic
$\exists x : S, P(x)$ is shorthand for what?
Back: $\exists x, x \in S \land P(x)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494819968 -->
END%%
2024-02-17 19:49:56 +00:00
%%ANKI
Basic
What term refers to $S$ in $\exists x : S, P(x)$?
Back: The domain of discourse.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction* , 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf ](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf ).
<!-- ID: 1708199272194 -->
END%%
2024-02-09 16:07:56 +00:00
%%ANKI
Basic
What is the identity element of $\lor$?
Back: $F$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494819970 -->
END%%
2024-02-11 19:05:17 +00:00
* **Universal quantification** ($\forall$) asserts that every member of a set satisfies a property.
2024-02-09 16:07:56 +00:00
%%ANKI
Basic
What symbol denotes universal quantification?
Back: $\forall$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494819971 -->
END%%
%%ANKI
Basic
2024-03-15 17:58:15 +00:00
How many members in the domain of discourse must satisfy a property in universal quantification?
2024-02-09 16:07:56 +00:00
Back: All of them.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494819973 -->
END%%
%%ANKI
Basic
$\forall x : S, P(x)$ is shorthand for what?
Back: $\forall x, x \in S \Rightarrow P(x)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494819976 -->
END%%
%%ANKI
Basic
What is the identity element of $\land$?
Back: $T$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494819978 -->
END%%
%%ANKI
Cloze
{1:$\exists$} is to {2:$\lor$} as {2:$\forall$} is to {1:$\land$}.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494819979 -->
END%%
%%ANKI
Basic
How is $\forall x : S, P(x)$ equivalently written in terms of existential quantification?
Back: $\neg \exists x : S, \neg P(x)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494819981 -->
END%%
%%ANKI
How is $\exists x : S, P(x)$ equivalently written in terms of universal quantification?
Back: $\neg \forall x : S, \neg P(x)$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
END%%
2024-02-11 19:05:17 +00:00
* **Counting quantification** ($\exists^{=k}$ or $\exists^{\geq k}$) asserts that (at least) $k$ (say) members of a set satisfy a property.
2024-02-09 16:07:56 +00:00
%%ANKI
Basic
2024-02-11 19:05:17 +00:00
What symbol denotes counting quantification (of *exactly* $k$ members)?
2024-02-09 16:07:56 +00:00
Back: $\exists^{=k}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494819983 -->
END%%
%%ANKI
Basic
2024-02-11 19:05:17 +00:00
What symbol denotes counting quantification (of *at least* $k$ members)?
2024-02-09 16:07:56 +00:00
Back: $\exists^{\geq k}$
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494819985 -->
END%%
%%ANKI
Basic
How is $\exists x : S, P(x)$ written in terms of counting quantification?
2024-06-29 15:59:48 +00:00
Back: $\exists^{\geq 1}\, x : S, P(x)$
2024-02-09 16:07:56 +00:00
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494832056 -->
END%%
%%ANKI
Basic
How is $\forall x : S, P(x)$ written in terms of counting quantification?
2024-06-29 15:59:48 +00:00
Back: Assuming $S$ has $k$ members, $\exists^{= k}\, x : S, P(x)$
2024-02-09 16:07:56 +00:00
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707494832058 -->
END%%
2024-06-14 01:47:47 +00:00
%%ANKI
Cloze
Propositional logical operator: $\forall x, \forall y, P(x, y)$ {$\Leftrightarrow$} $\forall y, \forall x, P(x, y)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!-- ID: 1718327739967 -->
END%%
%%ANKI
Cloze
Propositional logical operator: $\forall x, \exists y, P(x, y)$ {$\Leftarrow$} {$\exists y, \forall x, P(x, y)$}.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!-- ID: 1718327739972 -->
END%%
%%ANKI
Cloze
Propositional logical operator: $\exists x, \forall y, P(x, y)$ {$\Rightarrow$} $\forall y, \exists x, P(x, y)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!-- ID: 1718327739978 -->
END%%
%%ANKI
Cloze
Propositional logical operator: $\exists x, \exists y, P(x, y)$ {$\Leftrightarrow$} $\exists y, \exists x, P(x, y)$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!-- ID: 1718327812365 -->
END%%
2024-07-08 14:13:15 +00:00
%%ANKI
Basic
When does $\exists x, \forall y, P(x, y) \Rightarrow \forall y, \exists x, P(x, y)$ hold true?
Back: Always.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!-- ID: 1720386023292 -->
END%%
%%ANKI
Basic
When does $\forall x, \exists y, P(x, y) \Rightarrow \exists y, \forall x, P(x, y)$ hold true?
Back: When there exists a $y$ that $P(x, y)$ holds for over all quantified $x$.
Reference: Herbert B. Enderton, *Elements of Set Theory* (New York: Academic Press, 1977).
<!-- ID: 1720386023296 -->
END%%
2024-02-11 19:05:17 +00:00
## Identifiers
Identifiers are said to be **bound** if they are parameters to a quantifier. Identifiers that are not bound are said to be **free** . A first-order logic formula is said to be in **prenex normal form** (PNF) if written in two parts: the first consisting of quantifiers and bound variables (the **prefix** ), and the second consisting of no quantifiers (the **matrix** ).
%%ANKI
Basic
Prenex normal form consists of what two parts?
Back: The prefix and the matrix.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707674796773 -->
END%%
%%ANKI
Basic
How is the prefix of a formula in PNF formatted?
Back: As only quantifiers and bound variables.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707674796775 -->
END%%
%%ANKI
Basic
How is the matrix of a formula in PNF formatted?
Back: Without quantifiers.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707674796776 -->
END%%
%%ANKI
Basic
2024-07-11 02:47:37 +00:00
Which identifiers in the following are bound? $\exists x, P(x) \land P(y)$
2024-02-11 19:05:17 +00:00
Back: Just $x$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707674796777 -->
END%%
%%ANKI
Basic
2024-07-11 02:47:37 +00:00
Which identifiers in the following are free? $\exists x, P(x) \land P(y)$
2024-02-11 19:05:17 +00:00
Back: Just $y$.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707674796779 -->
END%%
%%ANKI
Basic
2024-07-11 02:47:37 +00:00
How is the following rewritten in PNF? $(\exists x, P(x)) \land (\exists y, Q(y))$
Back: $\exists x \;y, P(x) \land Q(y)$
2024-02-11 19:05:17 +00:00
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1707675399517 -->
END%%
2024-07-11 02:47:37 +00:00
%%ANKI
Basic
How is the following rewritten in PNF? $(\exists x, P(x)) \land (\forall y, Q(y))$
Back: N/A.
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!-- ID: 1720665224639 -->
END%%
2024-03-22 15:26:41 +00:00
## Bibliography
2024-02-09 16:07:56 +00:00
2024-02-17 19:49:56 +00:00
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
* Oscar Levin, *Discrete Mathematics: An Open Introduction* , 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf ](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf ).