A **permutation** of some $n$ objects is a (possible) rearrangement of those $n$ objects. The number of permutations is $n!$ since there are $n$ possible ways to pick the first object, $(n - 1)$ possible ways to pick the second, and so on.
Back: An ordered arrangement of some collection of objects.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708366788567-->
END%%
%%ANKI
Basic
How many permutations are there of $n$ objects?
Back: $n!$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Back: There are $n$ choices for the first position, $n - 1$ choices for the second, etc.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708366788576-->
END%%
%%ANKI
Basic
What combinatorial concept explains $n!$ permutations of $n$ objects?
Back: The multiplicative principle.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708366788580-->
END%%
%%ANKI
Basic
How does sorting relate to the concept of permutations?
Back: Sorting aims to efficiently find a specific permutation.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Tags: algorithm
<!--ID: 1708366788587-->
END%%
%%ANKI
Basic
What symbol denotes "$n$ factorial"?
Back: $n!$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708366788594-->
END%%
%%ANKI
Basic
What is the identity element of $\cdot$ (multiplication)?
Back: $1$
Reference: Gries, David.*The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
<!--ID: 1708366788597-->
END%%
%%ANKI
Basic
What does $0!$ (factorial) evaluate to?
Back: $1$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708366788600-->
END%%
%%ANKI
Basic
*Why* might $0! = 1$ (barring convention)?
Back: Because the empty product is $1$, the multiplication identity.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708366788603-->
END%%
%%ANKI
Basic
What combinatorial concept explains the number of bijective functions between two finite sets?
Back: Permutations (factorials).
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708366788606-->
END%%
%%ANKI
Basic
How many bijective functions exist between $\{1, 2, 3\}$ and $\{a, b, c\}$?
Back: $3!$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708366788610-->
END%%
%%ANKI
Basic
How many bijective functions exist between finite sets $A$ and $B$ where $|A| = |B| = n$?
Back: $n!$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
We can find the next lexicographic ordering of an array via a procedure of "pivot", "swap", and "reverse". The function `void next(const size_t n, int A[static n])` defined in [[#Overview]] shows the details, taking in a permutation and producing the next, lexicographically speaking. To prove correctness, consider the following:
```
[ a₁ a₂ ... aᵢ | aᵢ₊₁ aᵢ₊₂ ... aₙ ]
```
Here the RHS side is the longest increasing sequence we could find, from right to left. That is, $a_{i+1} > a_{i+2} > \cdots > a_n$. Denote $a_i$ as the pivot. Next, swap the smallest element in the RHS greater than $a_i$, say $a_j$, with $a_i$. This produces
```
[ a₁ a₂ ... aⱼ | aᵢ₊₁ aᵢ₊₂ ... aᵢ ... aₙ ]
```
Notice the RHS remains in sorted order. Since $a_j$ was the next smallest element, reversing the reverse-sorted RHS produces the next permutation, lexicographically speaking:
```
[ a₁ a₂ ... aⱼ | aₙ ... aᵢ ... aᵢ₊₂ aᵢ₊₁ ]
```
Eventually the swapped $a_j$ will be the largest in the RHS ensuring that the breakpoint will eventually move one more position leftward.
%%ANKI
Basic
What algorithm does `NEXT_LEXICO_ARRAY` refer to?
Back: The finding of the next lexicographic ordering of an array.
If we generalize to choosing $k \leq n$ elements of $k$ objects, we can calculate the $k$-permutation of $n$. This is denoted as $(n)_k$, sometimes called the **falling factorial**. $$(n)_k = \frac{n!}{(n - k)!}$$
The derivation works by noting that we have $n - 0$ possible ways to pick the first object, $n - 1$ ways to pick the second, up until $n - (k - 1)$ ways to pick the last object.
%%ANKI
Basic
What *is* a $k$-permutation?
Back: An ordered arrangement, containing $k$ elements, of some collection of objects.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
How is $n!$ written equivalently as a falling factorial?
Back: $(n)_n$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
How is $(n)_k$ $k$-permutations of $n$ objects derived?
Back: There are $n$ choices for the first position, $n - 1$ choices for the second, etc. up until $n - (k - 1)$ choices for the last position.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708366788625-->
END%%
%%ANKI
Basic
What does $(n)_n$ evaluate to?
Back: $n!$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708366788628-->
END%%
%%ANKI
Basic
What does $(n)_0$ evaluate to?
Back: $1$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708366788631-->
END%%
%%ANKI
Cloze
In a $k$-permutation of $n$ objects, there are $n - 0$ choices for first object and {$n - (k - 1)$} choices for the last object.
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708366788634-->
END%%
%%ANKI
Basic
What combinatorial concept explains the number of injective functions between two finite sets?
Back: $k$-permutations (falling factorials).
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
<!--ID: 1708366788638-->
END%%
%%ANKI
Basic
How many injective functions exist between $\{1, 2, 3\}$ and $\{a, b, c, d, e\}$?
Back: $(5)_3$
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
* Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).