Integers are typically encoded using either **unsigned encoding** or **two's-complement**. The following table highlights how the min and max of these encodings behave:
Back: A type representing finite ranges of integers.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Which of unsigned encoding or two's-complement exhibit asymmetry in their range?
Back: Two's-complement.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708453398379-->
END%%
%%ANKI
Basic
What integral values share the same binary representation in unsigned encoding and two's-complement?
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708454709515-->
END%%
%%ANKI
Basic
According to the C standard, how are `unsigned` integral types encoded?
Back: Using unsigned encoding.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708455064691-->
END%%
%%ANKI
Basic
According to the C standard, how are `signed` integral types encoded?
Back: The C standard leaves this unspecified.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
According to the C standard, Is `unsigned` underflow/overflow safe?
Back: Yes
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708551236389-->
END%%
%%ANKI
Basic
According to the C standard, Is `signed` underflow/overflow safe?
Back: No
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708551236392-->
END%%
%%ANKI
Basic
Why is `signed` underflow/overflow considered UB?
Back: Because there is no requirement on how `signed` integers are encoded.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708551236395-->
END%%
%%ANKI
Basic
How does $UMax$ relate to $TMax$?
Back: $UMax = 2 \cdot TMax + 1$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708453398445-->
END%%
%%ANKI
Basic
*Why* is it $UMax = 2 \cdot TMax + 1$?
Back: All bit patterns denoting negative numbers in two's-complement are positive in unsigned encoding.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708613447880-->
END%%
%%ANKI
Basic
What are the binary encodings of $UMax_4$ and $TMax_4$?
Back: $1111_2$ and $0111_2$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708453398449-->
END%%
%%ANKI
Basic
Reinterpret $TMax$ in unsigned encoding. What arithmetic operations yield $UMax$?
Back: Multiply by two and add one.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708453398454-->
END%%
%%ANKI
Basic
Reinterpret $TMax$ in unsigned encoding. What bitwise operations yield $UMax$?
Back: One-bit left shift and add one.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708453398459-->
END%%
%%ANKI
Basic
Reinterpret $UMax$ in two's-complement. What decimal value do you have?
Back: $-1$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Always represents nonnegative numbers. Given an integral type $\vec{x}$ of $w$ bits, we convert binary to its unsigned encoding with: $$B2U_w(\vec{x}) = 2^{w-1}x_{w-1} + \sum_{i=0}^{w-2} 2^ix_i$$
Note we unfold the summation on the RHS by one term to make it's relationship to $T2U_w$ clearer.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708545383256-->
END%%
%%ANKI
Basic
What does $UMax_w$ evaluate to?
Back: $2^w - 1$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708177246128-->
END%%
%%ANKI
Basic
What is the binary representation of the smallest $4$-bit unsigned number?
Back: $0000_2$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708177246133-->
END%%
%%ANKI
Basic
What is the binary representation of the largest $4$-bit unsigned number?
Back: $1111_2$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708177246143-->
END%%
%%ANKI
Basic
What does the "uniqueness" of unsigned encoding refer to?
Back: The function used to convert integral types to their unsigned encoding is a bijection.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Back: The number of bits in the integral type being interpreted.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
How is the largest unsigned integer formatted in hexadecimal?
Back: As all `F`s.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: “Two’s-Complement.” In *Wikipedia*, January 9, 2024. [https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561](https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561).
Back: Because this always yields a bit string of all `1`s.
Reference: “Two’s-Complement.” In *Wikipedia*, January 9, 2024. [https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561](https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561).
<!--ID: 1708545574154-->
END%%
%%ANKI
Basic
Regardless of word size, what bitwise operations yield $UMax$?
Back: `~0`
Reference: “Two’s-Complement.” In *Wikipedia*, January 9, 2024. [https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561](https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561).
Represents negative numbers along with nonnegative ones. Given an integral type $\vec{x}$ of $w$ bits, we convert binary to its twos'-complement encoding with: $$B2T_w(\vec{x}) = -2^{w-1}x_{w-1} + \sum_{i=0}^{w-2} 2^ix_i$$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708177246128-->
END%%
%%ANKI
Cloze
$[${1:$0$}, {2:$2^w$}$)$ is to unsigned as $[${1:$-2^{w-1}$}, {2:$2^{w-1}$}$)$ is to two's-complement.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708179147813-->
END%%
%%ANKI
Basic
What is the binary representation of the smallest $4$-bit two's-complement number?
Back: $1000_2$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708179649872-->
END%%
%%ANKI
Basic
What is the binary representation of the largest $4$-bit two's-complement number?
Back: $0111_2$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708179649876-->
END%%
%%ANKI
Cloze
The {sign bit} refers to the {most significant bit} in two's-complement.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708179649881-->
END%%
%%ANKI
Basic
What is the weight of the sign bit in $w$-bit two's-complement?
Back: $-2^{w-1}$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708179649887-->
END%%
%%ANKI
Basic
What does the "uniqueness" of two's-complement refer to?
Back: The function used to convert integral types to two's-complement is a bijection.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Back: **T**wo's-complement to **b**inary, width $w$.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Back: The number of bits in the integral type being interpreted.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
How is the largest two's-complement integer formatted in hexadecimal?
Back: With a leading `7` followed by `F`s.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708453398425-->
END%%
%%ANKI
Basic
How is equality $|TMin| = |TMax|$ modified so that both sides actually balance?
Back: $|TMin| = |TMax| + 1$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708453398430-->
END%%
%%ANKI
Basic
Which of negative and positive numbers can two's-complement encoding express more of?
Back: Negative.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
What are the median values of two's-complement's encoding range?
Back: `-1` and `0`
Reference: “Two’s-Complement.” In *Wikipedia*, January 9, 2024. [https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561](https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561).
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Most implementations of C cast an object of one type to another by simply re-interpreting the object's binary representation. This casting may happen implicitly if comparing or operating on e.g. `signed` and `unsigned` objects in the same expression. $T2U$ and $U2T$ reflect this method of casting:
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
What values $x$ are unaffected when casting from `signed` to `unsigned`?
Back: $0 \leq x \leq TMax_w$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
What values $x$ are unaffected when casting from `unsigned` to `signed`?
Back: $0 \leq x \leq TMax_w$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
How are casts implicitly performed in operations containing `signed` and `unsigned` objects?
Back: `signed` objects are cast to `unsigned` objects.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Back: **U**nsigned to **t**wo's-complement, width $w$.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
For unsigned encoding, use **zero extension** to convert numbers to larger types. For example, $1010_2$ can be expanded to 8-bit $00001010_2$.
%%ANKI
Cloze
Use {zero} extension to convert {unsigned} numbers to larger types.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708697867799-->
END%%
%%ANKI
Basic
Zero extension is generally used for what type of integer encoding?
Back: Unsigned.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708697867807-->
END%%
%%ANKI
Basic
*Why* does zero extension of unsigned numbers work?
Back: The weights of additional bits are zeroed out.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708697867810-->
END%%
%%ANKI
Basic
*Why* does zero extension of two's-complement numbers generally not work?
Back: A negative value would have its new sign bit be positive.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708697867814-->
END%%
%%ANKI
Basic
How is $\langle x_3, x_2, x_1, x_0 \rangle$ zero extended to 8 bits?
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708697867818-->
END%%
For two's-complement, use **sign extension** to convert numbers to larger types. This means the additional leftmost bits are set to match the sign bit of the original number. For example, $1010_2$ can be expanded to 8-bit $11111010_2$.
%%ANKI
Cloze
Use {sign} extension to convert {two's-complement} numbers to larger types.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708697867821-->
END%%
%%ANKI
Basic
Sign extension is generally used for what type of integer encoding?
Back: Two's-complement.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708697867825-->
END%%
%%ANKI
Basic
*Why* does sign extension of two's-complement numbers work?
Back: The new sign bit weight is equal to the swing in the previous sign bit weight.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708697867829-->
END%%
%%ANKI
Basic
*Why* does sign extension of unsigned numbers generally not work?
Back: It actually does, though we technically call it zero extension.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708697867833-->
END%%
%%ANKI
Basic
How is $\langle x_3, x_2, x_1, x_0 \rangle$ sign extended to 8 bits?
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
x & = \langle x_{w-1}, \ldots, x_1, x_0 \rangle \\
x' & = \langle x_{k-1}, \ldots, x_1, x_0 \rangle
\end{align*}$$
Then in unsigned encoding, truncating $x$ to $k$ bits is equal to $x \bmod 2^k$. This is because $x_i \bmod 2^k = 0$ for all $i \geq k$ meaning $$B2U_k(x') = B2U_w(x) \bmod 2^k$$
%%ANKI
Basic
What bit string results from truncating $\langle x_{w-1}, \ldots, x_1, x_0 \rangle$ to $k$ bits?
Back: $\langle x_{k-1}, \ldots, x_1, x_0 \rangle$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708700130849-->
END%%
%%ANKI
Basic
What is the decimal value of truncating unsigned $x$ to $k$ bits?
Back: $x \bmod 2^k$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708700130856-->
END%%
%%ANKI
Basic
*Why* does truncating unsigned $x$ to $k$ bits yield $x \bmod 2^k$?
Back: $\bmod 2^k$ is a convenient way of "zero-ing" out bits $x_{w-1}, \ldots, x_k$.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708700130859-->
END%%
%%ANKI
Basic
How is the following equality balanced for $k \leq w$? $$B2U_w(\langle x_{w-1}, \ldots, x_1, x_0 \rangle) = B2U_k(\langle x_{k-1}, \ldots, x_1, x_0 \rangle)$$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708700225123-->
END%%
In two's-complement encoding, truncating $x$ to $k$ bits is equal to $U2T_k(T2U_w(x) \bmod 2^k)$. Like with unsigned truncation, $B2U_k(x') = B2U_w(x) \bmod 2^k$. Therefore $$U2T_k(B2U_k(x')) = U2T_k(B2U_w(x) \bmod 2^k)$$
%%ANKI
Basic
What is the $k$-truncation of $w$-bit two's-complement $x$?
Back: $U2T_k(T2U_w(x) \bmod 2^k)$
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708701087974-->
END%%
%%ANKI
Cloze
Two's-complement $k$-truncation of $w$-bit $x$ is {$U2T_k$}$(${$T2U_w(x) \bmod 2^k$}$)$.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708701087985-->
END%%
%%ANKI
Basic
What is the purpose of $U2T_k$ in two's-complement truncation expression $U2T_k(T2U_w(x) \bmod 2^k)$?
Back: To reinterpret the sign bit correctly.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708702794304-->
END%%
%%ANKI
Basic
What is the purpose of $T2U_w$ in two's-complement truncation expression $U2T_k(T2U_w(x) \bmod 2^k)$?
Back: To ensure $x$ is encoded with the right "type".
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
Back: $x \bmod 2^k$ will always yield an integer in range $[0, 2^k)$.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
<!--ID: 1708702794313-->
END%%
%%ANKI
Basic
What additional steps does calculating two's-complement truncation have?
Back: Casting to and from unsigned encoding.
Reference: Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
* Bryant, Randal E., and David O'Hallaron. *Computer Systems: A Programmer's Perspective*. Third edition, Global edition. Always Learning. Pearson, 2016.
* “Two’s-Complement.” In *Wikipedia*, January 9, 2024. [https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561](https://en.wikipedia.org/w/index.php?title=Two%27s_complement&oldid=1194543561).