Any term of form $(\lambda x. M)N$ is called a **$\beta$-redex**. The corresponding term $[N/x]M$ is its **contractum**. If and only if a term $P$ contains an occurrence of $(\lambda x. M)N$ and we replace that occurrence by $[N/x]M$, and the result is $P'$, we say we have **contracted** the redex-occurrence in $P$, and $P$ $\beta$-contracts to $P'$ or $P \,\triangleright_{1\beta}\, P'$.
If and only if $P$ can be changed to a term $Q$ by a finite series of $\beta$-contractions and changes of bound variables, we say $P$ $\beta$-reduces to $Q$, or $P \,\triangleright_{\beta}\, Q$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424840-->
END%%
%%ANKI
Cloze
"$\beta$-{contracts}" refers to exactly one contraction of a redex-occurrence.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424841-->
END%%
%%ANKI
Cloze
"$\beta$-{reduces}" refers to zero or more contractions of redex-occurrences.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424843-->
END%%
%%ANKI
Cloze
{1:$(\lambda x.M)N$} is to a {2:$\beta$-redex} whereas {2:$[N/x]M$} is to a {1:contractum}.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424846-->
END%%
%%ANKI
Basic
What contractum corresponds to $\beta$-redex $(\lambda x. M)N$?
Back: $[N/x]M$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424848-->
END%%
%%ANKI
Basic
What $\beta$-redex corresponds to contractum $[N/x]M$?
Back: $(\lambda x. M)N$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424849-->
END%%
%%ANKI
Basic
What does it mean to contract a redex-occurrence of $P$?
Back: A $\beta$-redex in $P$ was replaced by its contractum.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424850-->
END%%
%%ANKI
Basic
How do we denote "$P$ $\beta$-contracts to $Q$"?
Back: $P \,\triangleright_{1\beta}\, Q$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424852-->
END%%
%%ANKI
Basic
How do we denote "$P$ $\beta$-reduces to $Q$"?
Back: $P \,\triangleright_{\beta}\, Q$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Back: No $\beta$-redex was replaced with its contractum.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424857-->
END%%
%%ANKI
Basic
Given $\lambda$-term $P$, is $P \,\triangleright_{\beta}\, P$ true?
Back: Yes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424859-->
END%%
%%ANKI
Basic
Is $(\lambda x. x) \,\triangleright_{1\beta}\, (\lambda y. y)$ true?
Back: No.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424860-->
END%%
%%ANKI
Basic
Is $(\lambda x. x) \,\triangleright_{\beta}\, (\lambda y. y)$ true?
Back: Yes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424862-->
END%%
%%ANKI
Basic
In what way is $\beta$-contraction a stricter operation than $\beta$-reduction?
Back: The former *requires* replacing a $\beta$-redex occurrence with its contractum.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424864-->
END%%
%%ANKI
Basic
In what way is $\beta$-reduction more general than $\alpha$-conversion?
Back: $\beta$-reduction involves a finite sequence of $\beta$-contractions *and* $\alpha$-conversions.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424865-->
END%%
%%ANKI
Basic
How do we pronounce $P \,\triangleright_{1\beta}\, Q$?
Back: $P$ $\beta$-contracts to $Q$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1718475424867-->
END%%
%%ANKI
Basic
How do we pronounce $P \,\triangleright_{\beta}\, Q$?
Back: $P$ $\beta$-reduces to $Q$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Substitution is well-defined with respect to $\beta$-reduction. That is, if $M \,\triangleright_\beta\, M'$ and $N \,\triangleright_\beta\, N'$, then $$[N/x]M \,\triangleright_\beta\, [N'/x]M'$$
%%ANKI
Basic
The proof of which implication shows "substitution is well-behaved w.r.t. $\beta$-reduction"?
Back: $M \,\triangleright_\beta\, M' \land N \,\triangleright_\beta\, N' \Rightarrow [N/x]M \,\triangleright_\beta\, [N'/x]M'$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719406791418-->
END%%
%%ANKI
Basic
What does Hindley et al. mean by "substitution is well-behaved w.r.t. $\beta$-conversion"?
Back: Substitution then $\beta$-reduction is congruent to $\beta$-reduction then substitution.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719406791424-->
END%%
%%ANKI
Basic
How does Hindley et al. describe the following implication? $$M \,\triangleright_\beta\, M' \land N \,\triangleright_\beta\, N' \Rightarrow [N/x]M \,\triangleright_\beta\, [N'/x]M'$$
Back: As "substitution is well-defined with respect to $\beta$-reduction."
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
A term $Q$ which contains no $\beta$-redexes is called a **$\beta$-normal form** (or a **term in $\beta$-normal form** or just a **$\beta\text{-nf}$**). The class of all $\beta$-normal forms is called $\beta\text{-nf}$ or $\lambda\beta\text{-nf}$. If a term $P$ $\beta$-reduces to a term $Q$ in $\beta\text{-nf}$, then $Q$ is called a **$\beta$-normalform of $P$**.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719065185793-->
END%%
%%ANKI
Basic
Is $\beta$-reduction guaranteed to terminate?
Back: No.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719065185796-->
END%%
%%ANKI
Basic
Is $\beta$-reduction guaranteed to simplify?
Back: No.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719065185803-->
END%%
%%ANKI
Basic
How is a $\beta$-normal form defined?
Back: As a $\lambda$-term that contains no $\beta$-redexes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Back: It refers to a specific $\beta$-normal form or the class of $\beta$-normal forms.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719065185815-->
END%%
%%ANKI
Basic
What does it mean for term $Q$ to be a $\beta$-normal form of term $P$?
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719065185799-->
END%%
%%ANKI
Basic
What is the $\beta$-normal form of $(\lambda x. x(xy))N$?
Back: $N(Ny)$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719065602204-->
END%%
%%ANKI
Basic
What is the $\beta$-normal form of $(\lambda x. xx)(\lambda x. xx)$?
Back: N/A.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719103644322-->
END%%
%%ANKI
Basic
Is $(\lambda u. uv)x$ in $\beta$-normal form?
Back: No.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1720645031207-->
END%%
%%ANKI
Basic
*Why* is $x(\lambda u. uv)$ in $\beta$-normal form?
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Back: Because $(\lambda u. uv)x$ is a $\beta$-redex.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
*Why* is $a(\lambda u. uv)x$ in $\beta$-normal form?
Back: With parentheses, $(a(\lambda u. uv))x$ clearly contains no $\beta$-redex.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Let $P \,\triangleright_\beta\, Q$. How do $FV(P)$ and $FV(Q)$ relate to one another?
Back: $FV(Q) \subseteq FV(P)$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719406791430-->
END%%
%%ANKI
Basic
Suppose $P \,\triangleright_\beta\, Q$. When is $FV(Q) \subset FV(P)$ true?
Back: When replacing a $\beta$-redex with its contractum removes a free variable.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719406791433-->
END%%
%%ANKI
Basic
$\beta$-reduction "loses" free variable $N$ when it contains what $\beta$-redex?
Back: If $x \not\in FV(M)$, then $(\lambda x. M)N$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
As an alternative characterization, the class $\beta\text{-nf}$ is the smallest class such that
* all atoms are in $\beta\text{-nf}$;
* $M, N \in \beta\text{-nf} \Rightarrow aMN \in \beta\text{-nf}$ for all atoms $a$;
* $M \in \beta\text{-nf} \Rightarrow \lambda x. M \in \beta\text{-nf}$
%%ANKI
Basic
What proposition explains how atoms relate to the definition of $\beta\text{-nf}$?
Back: All atoms are in $\beta\text{-nf}$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Back: For all atoms $a$, if $M, N \in \beta\text{-nf}$, then $aMN \in \beta\text{-nf}$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1720645978924-->
END%%
%%ANKI
Basic
Given atom $a$ and $M \in \beta\text{-nf}$, what application is in $\beta\text{-nf}$?
Back: $aM$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1720646122613-->
END%%
%%ANKI
Basic
$M, N \in \beta\text{-nf}$ implies what application is in $\beta\text{-nf}$?
Back: $aMN$ for any atom $a$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1720645978929-->
END%%
%%ANKI
Basic
Given $M, N \in \beta\text{-nf}$, when is $MN \in \beta\text{-nf}$?
Back: When $M$ is not an abstraction.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1720645978933-->
END%%
%%ANKI
Basic
Given $M, N \in \beta\text{-nf}$, when is $MN \not\in \beta\text{-nf}$?
Back: When $M$ is an abstraction.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
What proposition explains how abstractions relate to the definition of $\beta\text{-nf}$?
Back: If $M \in \beta\text{-nf}$, then $\lambda x. M \in \beta\text{-nf}$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1720645978936-->
END%%
%%ANKI
Basic
$M \in \beta\text{-nf}$ implies what abstraction is in $\beta\text{-nf}$?
Back: $\lambda x. M$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1720645978940-->
END%%
%%ANKI
Basic
Given atom $a$, if $M \equiv aM_1\ldots M_n$ and $M \,\triangleright_\beta\, N$, what form does $N$ have?
Back: $aN_1\ldots N_n$ where $M_i \,\triangleright_\beta\, N_i$ for $i = 1, \ldots, n$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1720649942775-->
END%%
%%ANKI
Basic
Given atom $a$, if $M \equiv aM_1\ldots M_n$ and $M \,\triangleright_\beta\, N$, *why* does $N$ have form $aN_1\ldots N_n$?
Back: Since $M \equiv ((\cdots((aM_1)M_2)\cdots)M_n)$, every $\beta$-redex must be in an $M_i$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1720649942780-->
END%%
%%ANKI
Basic
What does it mean for a $\lambda$-term to *be* a $\beta\text{-nf}$?
Back: The $\lambda$-term contains no $\beta$-redex.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1720649942783-->
END%%
%%ANKI
Basic
What does it mean for a $\lambda$-term to *have* a $\beta\text{-nf}$?
Back: The $\lambda$-term can be $\beta$-reduced into a term in $\beta\text{-nf}$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1720649942787-->
END%%
%%ANKI
Basic
Suppose $[N/x]M$ is a $\beta\text{-nf}$. Is $M$ a $\beta\text{-nf}$?
Back: Yes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1720665224642-->
END%%
%%ANKI
Basic
Suppose $[N/x]M$ has a $\beta\text{-nf}$. Does $M$ have a $\beta\text{-nf}$?
Back: Not necessarily.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
We say $P$ is **$\beta$-equal** or **$\beta$-convertible** to $Q$ ($P =_\beta Q$) iff $Q$ can be obtained from $P$ by a finite series of $\beta$-contractions, reversed $\beta$-contractions, and changes of bound variables. That is, $P =_\beta Q$ iff there exist $P_0, \ldots, P_n$ ($n \geq 0$) such that $P_0 \equiv P$, $P_n \equiv Q$, and $$\forall i \leq n - 1, (P_i \,\triangleright_{1\beta}\, P_{i+1}) \lor (P_{i+1} \,\triangleright_{1\beta}\, P_i) \lor (P_i \equiv_\alpha P_{i+1}).$$
%%ANKI
Basic
$\triangleright_\beta$ denotes what relation?
Back: $\beta$-reduction.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1721305567121-->
END%%
%%ANKI
Basic
$\triangleright_{1\beta}$ denotes what relation?
Back: $\beta$-contraction.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1721305567128-->
END%%
%%ANKI
Basic
$=_{\beta}$ denotes what relation?
Back: $\beta$-equality.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1721305567134-->
END%%
%%ANKI
Cloze
{$\beta$-equality} is also known as {$\beta$-convertibility}.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1721305567144-->
END%%
%%ANKI
Basic
Is $\beta$-reduction a symmetric relation?
Back: No.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1721305567151-->
END%%
%%ANKI
Basic
Is $\beta$-equality a symmetric relation?
Back: Yes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1721305567156-->
END%%
%%ANKI
Cloze
{$\beta$-equality} is the symmetric generalization of {$\beta$-reduction}.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1721305567163-->
END%%
%%ANKI
Basic
What does it mean for $P$ to be $\beta$-equal to $Q$?
Back: $Q$ can be obtained from $P$ by a finite series of $\beta$-contractions, reversed $\beta$-contractions, and $\alpha$-conversions.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1721305567175-->
END%%
%%ANKI
Basic
How is "$P$ is $\beta$-equal to $Q$" denoted?
Back: $P =_\beta Q$
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1721305567189-->
END%%
%%ANKI
Basic
$\beta$-reduction constitute what two operations?
Back: $\beta$-contractions and $\alpha$-conversions.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1721305567196-->
END%%
%%ANKI
Basic
$\beta$-equality constitute what three operations?
Back: $\beta$-contractions, reversed $\beta$-contractions, and $\alpha$-conversions.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1721305567212-->
END%%
%%ANKI
Basic
How would Hindley et al. describe the following implication? $$M =_\beta M' \land N =_\beta N' \Rightarrow [N/x]M =_\beta [N'/x]M'$$
Back: As "substitution is well-defined with respect to $\beta$-equality."
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1721305567219-->
END%%
%%ANKI
Basic
If $P =_\beta Q$, how do $P$ and $Q$'s $\beta$-normal forms relate to one another?
Back: Either $P$ and $Q$ have the same $\beta$-normal form or neither $P$ nor $Q$ have a $\beta$-normal form.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
If $P \,\triangleright_\beta\, M$ and $P \,\triangleright_\beta\, N$, then there exists a term $T$ such that $M \,\triangleright_\beta\, T$ and $N \,\triangleright_\beta\, T$. As an immediate corollary, if $P$ has a $\beta$-normal form then it it is unique modulo $\equiv_\alpha$.
According to Hindley et al., what is the most quoted theorem in $\lambda$-calculus?
Back: The Church-Rosser theorem.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719577152587-->
END%%
%%ANKI
Basic
The Church-Rosser theorem is related to which greek-prefixed concept?
Back: $\beta$-reductions.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719577152591-->
END%%
%%ANKI
Basic
What does the Church-Rosser theorem state in terms of $\triangleright_\beta$?
Back: If $P \,\triangleright_\beta\, M$ and $P \,\triangleright_\beta\, N$, then there exists a term $T$ such that $M \,\triangleright_\beta\, T$ and $N \,\triangleright_\beta\, T$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719577152594-->
END%%
%%ANKI
Basic
When does a $\lambda$-term have zero $\beta$-normal forms (modulo $\equiv_\alpha$)?
Back: When its $\beta$-reductions fail to simplify.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719577152597-->
END%%
%%ANKI
Basic
When does a $\lambda$-term have one $\beta$-normal form (modulo $\equiv_\alpha$)?
Back: When its $\beta$-reductions simplify to a point of containing no $\beta$-redexes.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719577152601-->
END%%
%%ANKI
Basic
When does a $\lambda$-term have two $\beta$-normal form (modulo $\equiv_\alpha$)?
Back: N/A.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719577152604-->
END%%
%%ANKI
Basic
What theorem is used to prove uniqueness of $\beta$-normal forms?
Back: The Church-Rosser theorem.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719577152613-->
END%%
%%ANKI
Basic
The following diagram is a representation of what theorem?
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719577152616-->
END%%
%%ANKI
Basic
According to Hindley et al., what is the most important application of the Church-Rosser theorem?
Back: Showing computations in $\lambda$-calculus produce congruent results.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1719577152620-->
END%%
%%ANKI
Basic
For a given $\lambda$-term $P$, how many $\beta$-normal forms does $P$ have?
Back: Zero or one.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
Likewise, if $P =_\beta Q$, then there exists a term $T$ such that $P \,\triangleright_\beta\, T$ and $Q \,\triangleright_\beta\, T$.
%%ANKI
Basic
What does the Church-Rosser theorem state in terms of $=_\beta$?
Back: If $P =_\beta Q$ then there exists a term $T$ such that $P \,\triangleright_\beta\, T$ and $Q \,\triangleright_\beta\, T$.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
<!--ID: 1721305567238-->
END%%
%%ANKI
Basic
What theorem encourages giving $\beta$-equality its name?
Back: The Church-Rosser theorem.
Reference: Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).
* Hindley, J Roger, and Jonathan P Seldin. “Lambda-Calculus and Combinators, an Introduction,” n.d. [https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf](https://www.cin.ufpe.br/~djo/files/Lambda-Calculus%20and%20Combinators.pdf).