An **alphabet** is any nonempty finite set. The members of an alphabet are called **symbols** of the alphabet. A **string over an alphabet** is a finite sequence of symbols from that alphabet, usually written next to one another without separation.
Then **length** of a string $w$ over an alphabet, denoted $\lvert w \rvert$, is the number of symbols $w$ contains. The **empty string**, denoted $\epsilon$, is the string of length $0$. The **reverse** of $w$ is the string obtained by writing $w$ in the opposite order.
String $z$ is a **substring** of $w$ if $z$ appears consecutively within $w$. The **concatenation** of strings $x$ and $y$, written $xy$, is the string obtained by appending $y$ to the end of $x$. We say string $x$ is a **prefix** of string $y$ if a string $z$ exists where $xz = y$. We say $x$ is a **proper prefix** of $y$ if $x \neq y$.
A **language** is a set of strings. A language is **prefix-free** if no member is a proper prefix of another member.
%%ANKI
Basic
What is an alphabet?
Back: A nonempty finite set.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366600-->
END%%
%%ANKI
Basic
An alphabet is a set satisfying what two properties?
Back: It is nonempty and finite.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366604-->
END%%
%%ANKI
Basic
What is a symbol of an alphabet?
Back: A member of the alphabet.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366608-->
END%%
%%ANKI
Basic
What name is given to members of an alphabet?
Back: Symbols.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366611-->
END%%
%%ANKI
Cloze
A {symbol} is a {member} of an {alphabet}.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366614-->
END%%
%%ANKI
Basic
What is a string over an alphabet?
Back: A finite sequence of symbols from that alphabet.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366618-->
END%%
%%ANKI
Basic
What kind of mathematical entity is a string over an alphabet?
Back: A finite sequence.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366621-->
END%%
%%ANKI
Basic
$01001$ is a string over what minimal alphabet?
Back: $\{0, 1\}$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366624-->
END%%
%%ANKI
Basic
$hello$ is a string over what minimal alphabet?
Back: $\{e, h, l, o\}$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366627-->
END%%
%%ANKI
Basic
How is the length of string $s$ over alphabet $\Sigma$ denoted?
Back: As $\lvert s \rvert$.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366630-->
END%%
%%ANKI
Basic
How is the length of a string over an alphabet defined?
Back: As the number of symbols in the string.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366633-->
END%%
%%ANKI
Basic
Let $w$ be a string over some alphabet. How is the length of $w$ denoted?
Back: $\lvert w \rvert$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366636-->
END%%
%%ANKI
Basic
What is the empty string over an alphabet?
Back: The string of length $0$.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366639-->
END%%
%%ANKI
Basic
How is the empty string over an alphabet typically denoted?
Back: $\epsilon$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366642-->
END%%
%%ANKI
Basic
What is the reverse of string $w$ over some alphabet?
Back: The string obtained by writing $w$ in opposite order.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366645-->
END%%
%%ANKI
Basic
How is the reverse of string $w$ over some alphabet typically denoted?
Back: $w^R$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366648-->
END%%
%%ANKI
Basic
How does the length of a string relate to the length of its reverse?
Back: They are equal.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366651-->
END%%
%%ANKI
Basic
How does the length of a string relate to the length of a substring?
Back: The latter is less than or equal to the former.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366655-->
END%%
%%ANKI
Basic
What is a substring of string $w$ over some alphabet?
Back: A string that appears consecutively within $w$.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366659-->
END%%
%%ANKI
Basic
Let $x$ and $y$ be strings over some alphabet. How is their concatenation denoted?
Back: $xy$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366662-->
END%%
%%ANKI
Basic
Let $x$ and $y$ be strings over some alphabet. What is the length of $\lvert x y \rvert$?
Back: $\lvert x \rvert + \lvert y \rvert$
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366666-->
END%%
%%ANKI
Basic
Let $x$ be a string over some alphabet. What does $xx$ denote?
Back: The concatenation of $x$ with itself.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366679-->
END%%
%%ANKI
Basic
Let $x$ be a string over some alphabet. What does $x^k$ denote?
Back: The concatenation of $x$ with itself $k$ times.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366683-->
END%%
%%ANKI
Basic
What does it mean for string $x$ to be a prefix of string $y$ over some alphabet?
Back: There exists some string $z$ such that $xz = y$.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366687-->
END%%
%%ANKI
Basic
What does it mean for string $x$ to be a proper prefix of string $y$ over some alphabet?
Back: There exists some string $z$ such that $xz = y$ and $x \neq y$.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366692-->
END%%
%%ANKI
Basic
What does it mean for string $x$ to be a suffix of string $y$ over some alphabet?
Back: There exists some string $z$ such that $zx = y$.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366697-->
END%%
%%ANKI
Basic
What does it mean for string $x$ to be a proper suffix of string $y$ over some alphabet?
Back: There exists some string $z$ such that $zx = y$ and $x \neq y$.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366705-->
END%%
%%ANKI
Basic
A language is a set satisfying what?
Back: It contains strings over some alphabet.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366709-->
END%%
%%ANKI
Cloze
{1:Symbols} are to {2:alphabets} whereas {2:strings} are to {1:languages}.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366713-->
END%%
%%ANKI
Basic
What does it mean for a language to be prefix-free?
Back: No member is a *proper* prefix of another member.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366717-->
END%%
%%ANKI
Basic
What does it mean for a language to be suffix-free?
Back: No member is a *proper* suffix of another member.
Reference: Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).
<!--ID: 1734903366720-->
END%%
## Bibliography
* Michael Sipser, _Introduction to the Theory of Computation_, Third edition, international edition (Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United States: Cengage Learning, 2013).