322 lines
13 KiB
Markdown
322 lines
13 KiB
Markdown
|
---
|
|||
|
title: Propositional Logic
|
|||
|
TARGET DECK: Obsidian::STEM
|
|||
|
FILE TAGS: formal-system::propositional
|
|||
|
tags:
|
|||
|
- logic
|
|||
|
- propositional
|
|||
|
---
|
|||
|
|
|||
|
## Overview
|
|||
|
|
|||
|
**Propositional logic** is a logical system derived from negation ($\neg$), conjunction ($\land$), disjunction ($\lor$), implication ($\Rightarrow$), and biconditionals ($\Leftrightarrow$). A **proposition** is a sentence that can be assigned a truth value.
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Cloze
|
|||
|
{Propositional} logic is also known as {zeroth}-order logic.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1715897257085-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What are the basic propositional logical operators?
|
|||
|
Back: $\neg$, $\land$, $\lor$, $\Rightarrow$, and $\Leftrightarrow$
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861291-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is a proposition?
|
|||
|
Back: A declarative sentence that can be assigned a truth value.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272076-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What two categories do propositions fall within?
|
|||
|
Back: Atomic and molecular propositions.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272083-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is an atomic proposition?
|
|||
|
Back: One that cannot be broken up into smaller propositions.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272087-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is a molecular proposition?
|
|||
|
Back: One that can be broken up into smaller propositions.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272091-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Cloze
|
|||
|
A {molecular} proposition can be broken up into {atomic} propositions.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272095-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What distinguishes a sentence from a proposition?
|
|||
|
Back: The latter has an associated truth value.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272099-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What are constant propositions?
|
|||
|
Back: Propositions that contain only constants as operands.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1707422675517-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How does Lean define propositional equality?
|
|||
|
Back: Expressions `a` and `b` are propositionally equal iff `a = b` is true.
|
|||
|
Reference: Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
|||
|
Tags: lean
|
|||
|
<!--ID: 1706994861298-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How does Lean define `propext`?
|
|||
|
Back:
|
|||
|
```lean
|
|||
|
axiom propext {a b : Prop} : (a ↔ b) → (a = b)
|
|||
|
```
|
|||
|
Reference: Avigad, Jeremy. ‘Theorem Proving in Lean’, n.d.
|
|||
|
Tags: lean
|
|||
|
<!--ID: 1706994861300-->
|
|||
|
END%%
|
|||
|
|
|||
|
## Implication
|
|||
|
|
|||
|
Implication is denoted as $\Rightarrow$. In classical logic, it has truth table $$\begin{array}{c|c|c} p & q & p \Rightarrow q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$
|
|||
|
|
|||
|
Implication has a few "equivalent" English expressions that are commonly used.
|
|||
|
Given propositions $P$ and $Q$, we have the following equivalences:
|
|||
|
|
|||
|
* $P$ if $Q$
|
|||
|
* $P$ only if $Q$
|
|||
|
* $P$ is necessary for $Q$
|
|||
|
* $P$ is sufficient for $Q$
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What name is given to operand $a$ in $a \Rightarrow b$?
|
|||
|
Back: The antecedent.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861308-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What name is given to operand $b$ in $a \Rightarrow b$?
|
|||
|
Back: The consequent.
|
|||
|
Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1706994861310-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ if $Q$" in propositional logic?
|
|||
|
Back: $Q \Rightarrow P$
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272127-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ if $Q$" using "necessary"?
|
|||
|
Back: $P$ is necessary for $Q$.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1717853966420-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ if $Q$" using "sufficient"?
|
|||
|
Back: $Q$ is sufficient for $P$.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1717853966425-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ only if $Q$" in propositional logic?
|
|||
|
Back: $P \Rightarrow Q$
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272134-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ only if $Q$" using "necessary"?
|
|||
|
Back: $Q$ is necessary for $P$.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1717853966429-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ only if $Q$" using "sufficient"?
|
|||
|
Back: $P$ is sufficient for $Q$.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1717853966432-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ is necessary for $Q$" in propositional logic?
|
|||
|
Back: $Q \Rightarrow P$
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272140-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ is necessary for $Q$" using "if"?
|
|||
|
Back: $P$ if $Q$.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1717853966435-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ is necessary for $Q$" using "only if"?
|
|||
|
Back: $Q$ only if $P$.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1717853966438-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ is sufficient for $Q$" in propositional logic?
|
|||
|
Back: $P \Rightarrow Q$
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272145-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ is sufficient for $Q$" using "if"?
|
|||
|
Back: $Q$ if $P$.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1717853966441-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ is sufficient for $Q$" using "only if"?
|
|||
|
Back: $P$ only if $Q$.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1717853966444-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ if $Q$" using "only if"?
|
|||
|
Back: $Q$ only if $P$.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1717853966449-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ is sufficient for $Q$" using "necessary"?
|
|||
|
Back: $Q$ is necessary for $P$.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1717853966454-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ only if $Q$" using "if"?
|
|||
|
Back: $Q$ if $P$.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1717853966458-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
How do you write "$P$ is necessary for $Q$" using "sufficient"?
|
|||
|
Back: $Q$ is sufficient for $P$.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1717853966462-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Which logical operator maps to "if and only if"?
|
|||
|
Back: $\Leftrightarrow$
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272163-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Which logical operator maps to "necessary and sufficient"?
|
|||
|
Back: $\Leftrightarrow$
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272168-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is the converse of $P \Rightarrow Q$?
|
|||
|
Back: $Q \Rightarrow P$
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272173-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
When is implication equivalent to its converse?
|
|||
|
Back: It's indeterminate.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272178-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
What is the contrapositive of $P \Rightarrow Q$?
|
|||
|
Back: $\neg Q \Rightarrow \neg P$
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272184-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
When is implication equivalent to its contrapositive?
|
|||
|
Back: They are always equivalent.
|
|||
|
Reference: Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
<!--ID: 1708199272189-->
|
|||
|
END%%
|
|||
|
|
|||
|
%%ANKI
|
|||
|
Basic
|
|||
|
Given propositions $p$ and $q$, $p \Leftrightarrow q$ is equivalent to the conjunction of what two expressions?
|
|||
|
Back: $p \Rightarrow q$ and $q \Rightarrow p$.
|
|||
|
Reference: Reference: Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
<!--ID: 1715969047070-->
|
|||
|
END%%
|
|||
|
|
|||
|
## Bibliography
|
|||
|
|
|||
|
* Gries, David. *The Science of Programming*. Texts and Monographs in Computer Science. New York: Springer-Verlag, 1981.
|
|||
|
* “Law of Noncontradiction,” in _Wikipedia_, June 14, 2024, [https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction](https://en.wikipedia.org/w/index.php?title=Law_of_noncontradiction&oldid=1229006759).
|
|||
|
* * Oscar Levin, *Discrete Mathematics: An Open Introduction*, 3rd ed., n.d., [https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf](https://discrete.openmathbooks.org/pdfs/dmoi3-tablet.pdf).
|
|||
|
* “Principle of Explosion,” in _Wikipedia_, July 3, 2024, [https://en.wikipedia.org/w/index.php?title=Principle_of_explosion](https://en.wikipedia.org/w/index.php?title=Principle_of_explosion&oldid=1232334233).
|