
 Programming Assignment 4

COMP 520 (Sp 2014) 1 March 25, 2014

COMP 520: Compilers
Compiler Project – Assignment 4 (final)

Assigned: Tue Mar 25
Due: Tue Apr 15

The fourth checkpoint in your compiler is to construct a code generator for miniJava targeting
mJAM, an abstract machine like TAM (as described in Appendix C of our text), with a few
modifications to more directly support miniJava execution. The code generator can be
implemented using the AST visitor interface to make a single traversal of the AST, generating
runtime entity descriptions (RED) for all declarations, and emitting instructions using the RED
and the mJAM code generator interface for all executable constructs. A program passing
miniJava contextual analysis should be compiled to an mJAM program that, when executed, has
Java execution semantics. As a consequence of our PA1-PA3 restrictions, a valid program will
have a unique main method where execution should start. On termination of this method,
execution should halt.

1. miniJava modifications
The length field of arrays should be added and implemented. The length field cannot be
assigned, it can only be read.

2. Target machine: mJAM
The mJAM package will be available through the course web page. mJAM differs from TAM in
the following respects.

(1) mJAM does not use or maintain static links, because they are not needed for a language
that does not permit nested procedure declarations. Thus registers L1, … , L6 are not
part of mJAM, and the CALL instruction does not require a static link argument.

(2) mJAM has a new register OB (Object Base) that holds the value of this (i.e. the
address of the object instance) during execution of a non-static method.

(3) The CALL instruction is used to execute a static method at a known address. Arguments
are passed on the stack. The mJAM primitives (below) are also invoked using the CALL
instruction.

(4) The CALLI instruction is used to execute an instance method at a known address.
Arguments are on the stack followed by the address of the object instance. Thus, to call
x.foo(..) with k parameters, the k argument values followed by the address of x should
be on the stack, and the CALLI instruction should specify the code address of foo. CALLI
saves the OB register of the caller in the callee activation record and sets OB to the
address of the instance on the heap. OB can be used as the value ofthis during
execution of foo.

(5) The CALLD instruction is used for dynamic method invocation according to the dynamic
type of an instance. It is only needed when (single) inheritance is present. Since this is
precluded in PA4, CALLD should not be used.

 Programming Assignment 4

COMP 520 (Sp 2014) 2 March 25, 2014

(6) The RETURN (n) d instruction performs a return from a method. The same RETURN
instruction can be used regardless of how the method was invoked (CALL, CALLI, or
CALLD). It dismantles the frame of the current method, restoring the caller’s OB, and
LB, and popping d arguments off the caller stack (an instance does not count as an
argument) and replacing them with n result values. in mJAM n can only be 0 or 1.

(7) The displacement field d in mJAM may assume the full range of Java int values. Thus
any integer can be pushed on the stack with a LOADL instruction.

(8) mJAM includes all TAM primitive operations as well as the additions below. mJAM
primitive operations are static methods and are not passed an implicit instance on the
stack.

• The putintnl primitive prints the integer at stacktop with a “>>> “ prefix and a
newline at the end. miniJava’s d invocation System.out.println(…) (defined in the
standard environment) should be implemented using this mJAM primitive.

• The newarray primitive has stack operands and result as follows:
…, number of elts n → …, addr of new array

newarray allocates n + 2 words on the heap, initializes the first word to -2 (to indicate
this is an array), and the second word to n (the array length). All remaining words are
elements of the array and are initialized to zero. The result is the address of the first
element of the array.

• The arrayref primitive has stack operands and result as follows:
…, addr of array object a, element index i → …, value of a[i]

The result is the value of the ith element (0 ≤ i < array length) of the array starting at
address a. Execution of the instruction will fail with a nullPointer exception if the array
object address is null, or an array index error when i is not a valid index or a does not
refer to an array.

• The arrayupd primitive has stack operands and result as follows:
…, addr of array object a, element index i, new value v → …

The three arguments are consumed and no result is produced. However, the ith element
of a is set to v. The execution of the instruction will fail with a nullPointer error if the
array object address is null, or with an array index error when i is not a valid index or a
does not refer to an array.

• The newobj primitive has stack operands and result as follows:
…, addr of class object a, size (# of fields) of object n → …, addr of new obj

newobj allocates n + 2 words on the heap, with the first word initialized to the address
of the class object, and the second word initialized to n, and remaining words set to
zero. In this assignment you need not implement inheritance, and hence the class
object (which is used to dispatch the correct virtual method) is never used, so its
address can be -1. The result of the primitive is the address of the allocated object.

• The fieldref primitive has stack operands and result as follows:
…, addr of object a, field index i → …, value of a.i

The result is the value of the ith field of the object at address a (where 0 ≤ i < #fields).
Execution will fail with a nullPointer error if the object address is null, or with an array
index error when i < 0 or #fields ≤ i.

 Programming Assignment 4

COMP 520 (Sp 2014) 3 March 25, 2014

• The fieldupd primitive has stack operands and result as follows:
…, addr of object a, field index i, new value v → …

All three arguments are consumed and no result is produced, but the ith field of a is set
to value v (where 0 ≤ i < #fields). Execution will fail with a nullPointer error if the object
address is null, or with an array index error when i < 0 or #fields ≤ i.

3. Compiler operation
Your compiler should accept a source file to be compiled as a command line argument. The file
name may have a .java or .mjava extension. Given an input file, say foo.java, then if the
file contains a valid miniJava program (i.e. passes syntactic and contextual analysis), the
compiler should write out object file foo.mJAM (using the ObjectFile class in mJAM) and
terminate using System.exit(0). If the compiler discovers an error in the input program
during syntactic or contextual analysis, a relevant diagnostic message should be issued and the
compiler should terminate using System.exit(4). No object file should be written in this
case.
To execute the mJAM program in object file foo.mJAM, use

 java mJAM/Interpreter foo.mJAM

A putintnl instruction in mJAM called with e.g. value 15 on the stack will produce
 >>> 15
as a separate line on the console (stdout). This will help differentiate the output from your
miniJava program from any output produced by the interpreter (e.g. from halt (4)
instructions, or when run in debug mode).
To debug an mJAM program, first generate assembler code for the object file using java
mJAM/Disassembler foo.mJAM, which will generate the file foo.asm. Then invoke the
interpreter providing both the object code and the assembler code files as inputs:

 java mJAM/Interpreter foo.mJAM foo.asm

The debugger command prompt will appear with the program at instruction 0. The available
options will be listed in response to the command “?”.

	COMP 520: Compilers
	Compiler Project – Assignment 4 (final)

