
 Programming Assignment 2

COMP 520 (Sp 2014) 1 February 3, 2014

COMP 520: Compilers
Compiler Project - Assignment 2

Assigned: Tue Feb 4, 2014
Due: Sat Feb 22, 2014

The second milestone in the compiler project is to create an abstract syntax tree (AST) for
syntactically valid miniJava programs. You will need to extend your parser to construct the
miniJava AST using a set of AST classes outlined in this document and available as a package on
our course website. You will need to modify the miniJava grammar to incorporate Java operator
precedence rules in order to build the correct AST.

1. miniJava syntax changes
The grammar for this assignment is the miniJava grammar from the first assignment. However,
you should no longer allow “--” to be parsed as two subtraction operators. In full Java “--”
is a prefix and postfix operator applied to a variable to predecrement or postdecrement the
value of a variable referenced in an expression, respectively. Since we will not implement this
operator in miniJava, any expression involving “--” should be disallowed in miniJava. Here
are some examples.

Valid miniJava expressions:
 -b -(-b) - -b a-(-b) !b !!b

Invalid miniJava expressions (but valid Java expressions)
 --b a - --b a---b a--+--b

2. Operator precedence in expressions
In Java the evaluation order of expressions is controlled by parentheses and by standard
operator precedence rules from arithmetic and predicate logic. The following table lists the
precedence order of the miniJava operators from lowest to highest.

class operator(s)
disjunction ||

conjunction &&

equality ==, !=
relational <=, <, >, >=
additive +, -
multiplicative *, /
unary -, !

Binary operators are left associative and reflect precedence, so that 1-2+3 means (1-2)+3,
and 1+3*4/2 means 1+((3*4)/2). Unary operators are right associative. The challenge in
this part of the assignment is to construct a stratified grammar reflecting the precedence shown

 Programming Assignment 2

COMP 520 (Sp 2014) 2 February 3, 2014

above that also accommodates explicit precedence specified using parentheses. The correct
AST can be constructed in the course of parsing such a grammar.

3. Abstract syntax tree classes
The set of classes needed to build miniJava ASTs are provided in the AbstractSyntaxTrees
package available through the course website. Components of the AST “grammar” are
organized by the class hierarchy shown on the last page (right side). Abstract classes (shown
with an “A” superscript next to the class icon) represent nonterminals of the AST grammar, such
as Statement. The rule for Statement below shows the particular kinds of statements that may
be created in an AST; each corresponds to a concrete class in the hierarchy. For example, a
WhileStmt is a specific kind of Statement, and consists of an Expression (for the condition
controlling execution of the loop) and a Statement (for the body of the loop).

Statement ::=
 Reference Expression AssignStmt
 | Statement* BlockStmt
 | Reference Expression* CallStmt
 | Expression Statement Statement? IfStmt
 | VarDecl Expression VarDeclStmt
 | Expression Statement WhileStmt

If we look inside the AST class WhileStmt we find the following:

public class WhileStmt extends Statement {
{
 public WhileStmt(Expression e, Statement s, SourcePosition posn){
 super(posn);
 cond = e;
 body = s;
 }

 public Expression cond;
 public Statement body;
}

The constructor creates a WhileStmt node, and its two fields provide access to the AST subtrees
of the node (the expression cond controlling the loop repetition and the statement body to be
executed in each repetition). Note the nomenclature, each kind of Statement has a particular
name suggesting its kind (e.g. “While”) that is joined to “Stmt” to show the nonterminal from
which it derives.

Consult the documentation, source files, and AST constructed for the sample program to make
sure you understand the contents and structure of the AST classes. Some auxiliary classes are
included to provide a convenient way to create lists of nonterminals such as the StatementList
in the BlockStmt. The “start symbol” of the AST grammar is Package.

4. The AST Visitor
The AbstractSyntaxTrees package defines the Visitor interface that can be implemented
to create AST traversals. Contextual analysis and code generation will be structured as AST

 Programming Assignment 2

COMP 520 (Sp 2014) 3 February 3, 2014

traversals. ASTDisplay is an AST traversal implemented in the AbstractSyntaxTrees
package to print a textual representation of an AST (or any AST subtree). Use this facility to
inspect the ASTs you generate.

The text representation is created by a depth-first traversal of the AST. A node is displayed as its
class name on a single line. The attributes and children of the node are shown in subsequent
lines, indented two spaces to the right. Since the traversal is depth-first, the entire
representation of the left subtree will be shown before starting the representation of the right
subtree. For example, the Statement below has the AST shown on the right with text
representation of the AST on the left. Note that near the leaves the text representation is
compacted somewhat to improve readability.

while (true) x = this + 1;

WhileStmt
 LiteralExpr
 "true" BooleanLiteral
 AssignStmt
 IdRef
 "x" Identifier
 BinaryExpr
 "+" Operator
 RefExpr
 ThisRef
 LiteralExpr
 "1" IntLiteral

ASTDisplay can also list the source positions for each AST node if you enable the capability
within ASTDisplay and provide an appropriate toString() method for SourcePosition.
For these values to be meaningful, you need to set the source position for every AST node
correctly in the parser. It is useful for every AST node to have an associated source position
(really an interval in the source text) that can be used for error reporting in later stages. At this
stage it is not required and will, by default, not be displayed in the AST. However to create an
AST you will have to provide at least a null SourcePosition for each node.

5. Programming Assignment
For PA2 your Compiler mainclass should determine if the input source file constitutes a
syntactically valid miniJava program as defined by PA1 and definitions above. If so, it should
display the constructed AST for using the showTree method in the ASTDisplay class, and
terminate via System.exit(0). (Note: in your submission, disable the display of source
position). If the input source file is not syntactically valid miniJava, you should write a diagnostic
error message and terminate via System.exit(4). You may output any additional information
you wish, but do not alter any aspect of the AbstractSyntaxTrees package for the PA2
submission. Our testing will check that valid miniJava programs construct the correct AST.

WhileStmt

AssignStmt

BinaryExpr

Operator

“+”

LiteralExpr

BooleanLiteral

“true”

RefExpr

ThisRef

LiteralExpr

IntLiteral

“1”

IdRef

Identifier

“x”

 Programming Assignment 2

COMP 520 (Sp 2014) 4 February 3, 2014

======= AST Display =========================
Package
 ClassDeclList [1]
 . ClassDecl
 . "PA2" Identifier
 . FieldDeclList [1]
 . . (public) FieldDecl
 . . BOOLEAN BaseType
 . . "c" Identifier
 . MethodDeclList [1]
 . . (public static) MethodDecl
 . . VOID BaseType
 . . "main" Identifier
 . . ParameterDeclList [1]
 . . . ParameterDecl
 . . . ArrayType
 . . . ClassType
 . . . "String" Identifier
 . . . "args" Identifier
 . . StmtList [3]
 . . . VarDeclStmt
 . . . VarDecl
 . . . INT BaseType
 . . . "x" Identifier
 . . . LiteralExpr
 . . . "3" IntLiteral
 . . . IfStmt
 . . . BinaryExpr
 . . . ">" Operator
 . . . RefExpr
 . . . QualifiedRef
 . . . "x" Identifier
 . . . LiteralExpr
 . . . "1" IntLiteral
 . . . AssignStmt
 . . . QualifiedRef
 . . . "x" Identifier
 . . . BinaryExpr
 . . . "+" Operator
 . . . LiteralExpr
 . . . "1" IntLiteral
 . . . BinaryExpr
 . . . "*" Operator
 . . . LiteralExpr
 . . . "2" IntLiteral
 . . . RefExpr
 . . . QualifiedRef
 . . . "x" Identifier
 . . . CallStmt
 . . . QualifiedRef
 . . . "System" Identifier
 "out" Identifier
 "println" Identifier
 . . . ExprList [1]
 RefExpr
 QualifiedRef
 "x" Identifier
===

// simple PA2 example
class PA2 {

 public boolean c;

 public static void main(String[] args){
 if (x > 1)
 x = 1 + 2 * x;
 else
 b[3].a = 4;
 }
}

======= AST Display =========================
Package
 ClassDeclList [1]
 . ClassDecl
 . "PA2" classname
 . FieldDeclList [1]
 . . (public) FieldDecl
 . . BOOLEAN BaseType
 . . "c" fieldname
 . MethodDeclList [1]
 . . (public static) MethodDecl
 . . VOID BaseType
 . . "main" methodname
 . . ParameterDeclList [1]
 . . . ParameterDecl
 . . . ArrayType
 . . . ClassType
 . . . "String" classname
 . . . "args"parametername
 . . StmtList [1]
 . . . IfStmt
 . . . BinaryExpr
 . . . ">" Operator
 . . . RefExpr
 . . . IdRef
 . . . "x" Identifier
 . . . LiteralExpr
 . . . "1" IntLiteral
 . . . AssignStmt
 . . . IdRef
 . . . "x" Identifier
 . . . BinaryExpr
 . . . "+" Operator
 . . . LiteralExpr
 . . . "1" IntLiteral
 . . . BinaryExpr
 . . . "*" Operator
 . . . LiteralExpr
 . . . "2" IntLiteral
 . . . RefExpr
 . . . IdRef
 . . . "x" Identifier
 . . . AssignStmt
 . . . QualifiedRef
 . . . "a" Identifier
 . . . IndexedRef
 . . . LiteralExpr
 . . . "3" IntLiteral
 . . . IdRef
 . . . "b" Identifier
 . . . LiteralExpr
 . . . "4" IntLiteral
===

Example miniJava program and AST
AbstractSyntaxTrees

class hierarchy

	COMP 520: Compilers
	Compiler Project - Assignment 2

