
Compiler Project Assignment 1

COMP 520 1 January 14, 2014

Compiler Project
PA1 – Syntactic Analysis

Assigned: Tue Jan 14
Due: Sat Feb 1

The programming project in this class is the construction of a compiler for the miniJava
language. The first assignment is to build a scanner and parser for miniJava to recognize
syntactically correct programs. Section 1 of this assignment describes the miniJava language
syntax and section 2 details the assignment.

1. miniJava
The miniJava language is a subset of Java. Every miniJava program is a legal Java program with
Java semantics. Following is an informal summary of the syntactic restrictions of Java that
define miniJava. Later assignments will modify restrictions.

A miniJava program is a single file without a package declaration (hence corresponds to the
default package) and without imports. It consists of zero or more Java classes. The classes are
simple; there are no interface classes, subclasses, or nested classes.

The members of a class are fields and methods. Member declarations can specify public or
private access, and can specify static instantiation. Fields can not have an initializing
expression in their declaration. Methods have a parameter list and a body. There are no
constructor methods.

The types of miniJava are primitive types, class types, and array types. The primitive types are
limited to void, int, boolean, and the array types are limited to the integer array int []
and the class[] array where class is any class type.

The statements of miniJava are limited to the statement block, the assignment statement,
method invocation, the conditional statement (if), and the repetitive statement (while). A
declaration of a local variable (with required initializing expression) can only appear as a
statement within a statement block. The return statement, if present at all, can only appear as
the last statement in a method and yields a result.

The expressions of miniJava consist of operations applied to literals and references (including
indexed and qualified references), method invocation, and new arrays and objects. Expressions
may be parenthesized to specify evaluation order. The operators in miniJava are limited to

 relational operations: > < == <= >= !=
 logical operations: && || !
 arithmetic operations: + - * /

All operators are infix binary operators (binop) with the exception of the unary prefix operators
(unop) logical negation (!), and arithmetic negation (-). The latter is both a unary and binary
operator.

Compiler Project Assignment 1

COMP 520 2 January 14, 2014

1.1. Lexical rules
The terminals in the miniJava grammar are the tokens produced by the scanner. The token id
stands for any identifier formed from a sequence of letters, digits, and underscores, starting
with a letter. Uppercase letters are distinguished from lowercase letters. The token num stands
for any integer literal that is a sequence of decimal digits. Tokens binop and unop stand for the
operators listed above, and the token eot stands for the end of the input text. The remaining
tokens stand for themselves (i.e. for the sequence of characters that are used to spell them).
Keywords of the language are shown in bold for readability only; they are written in regular
lowercase text.

Whitespace and comments may appear before or after any token. Whitespace is limited to
spaces, tabs (\t), newlines (\n) and carriage returns (\r). There are two forms of comments.
One starts with /* and ends with */, while the other begins with // and extends to the end of
the line.

The text of miniJava programs is written in ASCII. Any characters other than those that are part
of a token, whitespace or a comment are erroneous.

1.2. Grammar
The miniJava grammar is shown on the next page. Nonterminals are displayed in the normal
font and start with a capital letter, while terminals are displayed in this font. Terminals id,
num, unop, and binop and represent a set of possible terminals. The remaining symbols are
part of the BNF extensions for grouping, choice, and repetition. Besides these extensions the
option construct is also used and is defined as follows: (α)? = (α | ε). To help distinguish the
parentheses used in grouping from the left and right parentheses used as terminals, the latter
are shown in bold. The start symbol of the grammar is “Program”.

2. Syntactic analysis assignment
The first task in the compiler project is to create a scanner and parser for miniJava starting
from the lexical rules and the grammar in this document. Create a miniJava directory that
holds a Compiler.java and a SyntacticAnalyzer subdirectory. You can follow the
structure and classes of the Triangle compiler, but avoid commitment to the Triangle
implementation since it will not work well for our project – many details will be different.

Populate the SyntacticAnalyzer subdirectory with implementations for the Scanner, Parser,
and Token classes. You may wish to include other classes for reading the sourcefile and keeping
track of a token’s position in the sourcefile; have a look at the classes defined in the syntactic
analyzer in the Triangle distribution (e.g. SourceFile, SourcePosition, SyntaxError).
You will not be building an AST yet, so you need not import AbstractSyntaxTree classes in
the parser.

The Compiler.java in the miniJava directory should contain a main method that parses the
sourcefile named as the first argument on the command line (the extension may be .java or
.mjava). Execution must terminate using the method System.exit(rc) where 𝑟𝑐 = 0 if the
input file was successfully parsed, and 𝑟𝑐 = 4 otherwise. No diagnostic message is needed in
case the parse fails at this point, but it will be needed at later checkpoints. Instructions for
submission of PA1 will follow closer to the due date.

Compiler Project Assignment 1

COMP 520 3 January 14, 2014

miniJava Grammar 1.0

Program ::= (ClassDeclaration)* eot

ClassDeclaration ::=
 class id {
 (FieldDeclaration | MethodDeclaration)*
 }

FieldDeclaration ::= Declarators id;

MethodDeclaration ::=
 Declarators id (ParameterList?) {
 Statement* (return Expression ;)?
 }

Declarators ::= (public | private)? static? Type

Type ::= PrimType | ClassType | ArrType

PrimType ::= int | boolean | void

ClassType ::= id

ArrType ::= (int | ClassType) []

ParameterList ::= Type id (, Type id)*

ArgumentList ::= Expression (, Expression)*

Reference ::= Reference . (id | id [Expression]) | BaseRef

BaseRef ::= this | id |id [Expression]

Statement ::=
 { Statement* }
 | Type id = Expression ;
 | Reference = Expression ;
 | Reference (ArgumentList?) ;
 | if (Expression) Statement (else Statement)?
 | while (Expression) Statement

Expression ::=
 Reference
 | Reference (ArgumentList?)
 | unop Expression
 | Expression binop Expression
 | (Expression)
 | num | true | false
 | new (id () | int [Expression] | id [Expression])

	Compiler Project
	PA1 – Syntactic Analysis

