
 Final Project Submission

COMP 520 1 April 17, 2014

COMP 520: Compilers
Compiler Project – Final submission

Due: Fri Apr 25, 2014 (accepted no later than Mon Apr 28)

The final submission consists of the following parts.

1. Guide to your compiler
This is a short document that you place in the submission directory in pdf format (ascii text or
Word is OK too). The document should contain the following:

• Scope of your project. Please make clear which basic and optional parts of the project
you have implemented. List known limitations of your implementation (it is better for
you to identify these than for us to find them).

• Summary of changes to distributed components. This part of the document should
summarize the changes you made to the AbstractSyntaxTree classes that were
distributed. Describe any changes you made to the AST class structure as well as
additions made to the classes to support contextual analysis and code generation. You
may include changes in mJAM for extensions if necessary, but please provide a
justification in addition to explaining what you changed.

• A description of your tests. This should describe any tests in the Testcases directory. If
you are not able to run PA4Test.java you should include some test(s) that exercise
the portion of the compiler that is working. If you have completed optional extensions
of the project, you should include a comprehensive testcase for each extension.

2. Compiler sources
Place a complete copy of your miniJava (and mJAM if needed) directory in the submission
directory.

Your compiler should compile miniJava programs supplied as files with extension ".java". For
example, if test35.java is a valid miniJava program, your compiler should terminate with
exit(0) and generate object code file test35.mJAM and a disassembled listing file
test35.asm. Both of these files can be generated using facilities provided in the mJAM
distribution.

If the source program is not a valid miniJava program, your compiler should write a diagnostic
message and exit(4).

The operation of your compiler should be as specified in PA1-PA4.

3. Testcases
This directory should contain the test programs you have described in your guide.

 Final Project Submission

COMP 520 2 April 17, 2014

4. Grading
The base functionality of the final project, as specified in PA4, will be assessed by functional
testing, inspection of the generated code, and evaluation of generated diagnostics. The overall
score of the project is obtained by combining contributions from all checkpoints to obtain a total
project score between 0-100.

If you wish, you may earn additional points to add to the overall score by incorporating further
features of Java into miniJava, as shown below. Unless indicated otherwise, the intended
semantics of each feature correspond to Java semantics, and, in general, may involve extensions
or changes in all phases of your compiler.

Point
value Feature

2 Static field initialization.

3 Add keyword null and support its use. Be sure uses are type correct.

3 Support class constructors with parameters.

4
for loops. Be sure to consider the possible forms of the initialization (including
declaration of the iterator variable), loop test, and increment portions of the for
statement.

6

Add a String type and string literals. No operations need to be supported on strings,
but you must be able to assign a string literal or a String reference to a variables of
type String, and it must be possible to print String values by overloading
System.out.println().

6

Code generation for conditional operations && and and || to select efficient code
sequences when used in expressions or when used as predicates in conditional or
repetitive statements. Efficient code sequences means: (1) there is no alternation
between jumps and construction of truth values on the stack and (2) there are no
chains of consecutive jumps without intervening tests in the evaluation of a
conditional expression.

8 Add overloaded methods that differ in the types of their arguments, and perform type
checking to determine their validity and to resolve overloading.

20-25
Inheritance of fields and methods, and dynamic method invocation. Be sure type
checking is extended appropriately. Optionally support instanceof and/or
super().

	COMP 520: Compilers
	Compiler Project – Final submission
	1. Guide to your compiler
	2. Compiler sources
	3. Testcases
	4. Grading

