r
/
fifth
1
Fork 0

Created parser for generic life automata

master
Joshua Potter 2015-06-04 14:16:25 -04:00
parent ead7725eb1
commit bde75c012e
9 changed files with 163 additions and 157 deletions

View File

@ -10,26 +10,11 @@ if __name__ == '__main__':
sys.path.append(os.path.abspath('src'))
import cam
import util as u
import ruleset as rs
def high_life(f_index, f_grid, indices, states, *args):
total = sum(f_grid[indices])
if not f_grid[f_index]:
if total == 3 or total == 6 or total == 8:
return rs.Configuration.OFF
else:
if total == 2 or total == 3:
return rs.Configuration.ON
return rs.Configuration.OFF
c = cam.CAM(1, 100, 2)
p = u.CAMParser('B368/S23', c)
c.randomize()
r = rs.Ruleset(rs.Ruleset.Method.SATISFY)
offsets = rs.Configuration.moore(c.master)
r.addConfiguration(c.master, high_life, offsets)
c.start_plot(100, r, lambda *args: True)
c.start_plot(100, p.ruleset)

View File

@ -1,5 +1,5 @@
"""
B3/S34: Game of Life
B3/S23: Game of Life
@author: jrpotter
@date: June 01, 2015
@ -10,33 +10,11 @@ if __name__ == '__main__':
sys.path.append(os.path.abspath('src'))
import cam
import util as u
import ruleset as rs
def game_of_life(f_index, f_grid, indices, states, *args):
"""
Rules of the Game of Life.
Note we ignore the second component of the neighbors tuples since
life depends on all neighbors
"""
total = sum(f_grid[indices])
if f_grid[f_index]:
if total < 2 or total > 3:
return rs.Configuration.OFF
else:
return rs.Configuration.ON
elif total == 3:
return rs.Configuration.ON
else:
return rs.Configuration.OFF
c = cam.CAM(1, 100, 2)
p = u.CAMParser('B3/S23', c)
c.randomize()
r = rs.Ruleset(rs.Ruleset.Method.SATISFY)
offsets = rs.Configuration.moore(c.master)
r.addConfiguration(c.master, game_of_life, offsets)
c.start_plot(100, r, lambda *args: True)
c.start_plot(100, p.ruleset)

View File

@ -10,22 +10,11 @@ if __name__ == '__main__':
sys.path.append(os.path.abspath('src'))
import cam
import util as u
import ruleset as rs
def lwd(f_index, f_grid, indices, states, *args):
total = sum(f_grid[indices])
if not f_grid[f_index] and total == 3:
return rs.Configuration.ON
else:
return f_grid[f_index]
c = cam.CAM(1, 100, 2)
p = u.CAMParser('B3/S012345678', c)
c.randomize()
r = rs.Ruleset(rs.Ruleset.Method.SATISFY)
offsets = rs.Configuration.moore(c.master)
r.addConfiguration(c.master, lwd, offsets)
c.start_plot(100, r, lambda *args: True)
c.start_plot(100, p.ruleset)

View File

@ -10,26 +10,11 @@ if __name__ == '__main__':
sys.path.append(os.path.abspath('src'))
import cam
import util as u
import ruleset as rs
def morley(f_index, f_grid, indices, states, *args):
total = sum(f_grid[indices])
if not f_grid[f_index]:
if total == 3 or total == 6 or total == 8:
return rs.Configuration.ON
else:
if total == 2 or total == 4 or total == 5:
return rs.Configuration.ON
return rs.Configuration.OFF
c = cam.CAM(1, 100, 2)
p = u.CAMParser('B368/S245', c)
c.randomize()
r = rs.Ruleset(rs.Ruleset.Method.SATISFY)
offsets = rs.Configuration.moore(c.master)
r.addConfiguration(c.master, morley, offsets)
c.start_plot(100, r, lambda *args: True)
c.start_plot(100, p.ruleset)

View File

@ -10,26 +10,11 @@ if __name__ == '__main__':
sys.path.append(os.path.abspath('src'))
import cam
import util as u
import ruleset as rs
def replicator(f_index, f_grid, indices, states, *args):
total = sum(f_grid[indices])
if not f_grid[f_index]:
if total % 2 == 1:
return rs.Configuration.ON
else:
if total % 2 == 1:
return rs.Configuration.ON
return rs.Configuration.OFF
c = cam.CAM(1, 100, 2)
p = u.CAMParser('B1357/S1357', c)
c.randomize()
r = rs.Ruleset(rs.Ruleset.Method.SATISFY)
offsets = rs.Configuration.moore(c.master)
r.addConfiguration(c.master, replicator, offsets)
c.start_plot(100, r, lambda *args: True)
c.start_plot(100, p.ruleset)

View File

@ -10,22 +10,11 @@ if __name__ == '__main__':
sys.path.append(os.path.abspath('src'))
import cam
import cam_util as u
import ruleset as rs
def seeds(f_index, f_grid, indices, states, *args):
total = sum(f_grid[indices])
if not f_grid[f_index] and total == 2:
return rs.Configuration.ON
else:
return rs.Configuration.OFF
c = cam.CAM(1, 100, 2)
p = u.CAMParser('B2/S', c)
c.randomize()
r = rs.Ruleset(rs.Ruleset.Method.SATISFY)
offsets = rs.Configuration.moore(c.master)
r.addConfiguration(c.master, seeds, offsets)
c.start_plot(100, r, lambda *args: True)
c.start_plot(100, p.ruleset)

25
src/exceptions.py Normal file
View File

@ -0,0 +1,25 @@
"""
@author: jrpotter
@date: June 4th, 2015
"""
class InvalidFormat(Exception):
"""
Called when parsing an invalid format.
For example, in MCell and RLE, numbers should be in ascending order.
"""
def __init__(self, value):
"""
"""
self.value = value
def __str__(self):
"""
"""
return repr(self.value)

View File

@ -12,22 +12,7 @@ import itertools as it
import numpy as np
def flatten(coordinates, grid):
"""
Given the coordinates of a matrix, returns the index of the flat matrix.
This is merely a convenience function to convert between N-dimensional space to 1D.
"""
index = 0
gridprod = 1
for i in reversed(range(len(coordinates))):
index += coordinates[i] * gridprod
gridprod *= grid.shape[i]
return index
import util
class Configuration:
@ -39,20 +24,11 @@ class Configuration:
the next state of a cell depending on a configuration.
"""
# Possible states a cell can take
#
# If a configuration passes, the cell's state will be on or off if ON or OFF was passed respectively.
# If IGNORE, then the state remains the same, but no further configurations will be checked by the
# ruleset.
ON = 1
OFF = 0
def __init__(self, grid, next_state, offsets={}):
"""
@next_state: Represents the next state of a cell given a configuration passes.
This should be an [ON|OFF|Function that returns ON or Off]
This should be an [0|1|Function that returns 0 or 1]
@offsets: A dictionary of offsets containing N-tuple keys and [-1, 0, 1] values.
Note N must be the same dimension as the grid's dimensions, as it specifies
@ -68,12 +44,11 @@ class Configuration:
f_offsets = []
for k, v in offsets.items():
states.append(v)
f_offsets.append(flatten(k, grid))
f_offsets.append(util.flatten(k, grid))
self.states = np.array(states)
self.offsets = np.array(f_offsets)
def passes(self, f_index, grid, vfunc, *args):
"""
Checks if a given configuration passes, and if so, returns the next state.
@ -96,9 +71,8 @@ class Configuration:
else:
return (success, self.next_state)
@classmethod
def moore(cls, grid, value=ON):
def moore(cls, grid, value=1):
"""
Returns a neighborhood corresponding to the Moore neighborhood.
@ -116,9 +90,8 @@ class Configuration:
return offsets
@classmethod
def neumann(cls, grid, value=ON):
def neumann(cls, grid, value=1):
"""
Returns a neighborhood corresponding to the Von Neumann neighborhood.
@ -139,7 +112,6 @@ class Configuration:
return offsets
class Ruleset:
"""
The primary class of this module, which saves configurations of cells that yield the next state.
@ -171,7 +143,7 @@ class Ruleset:
MATCH = 0
TOLERATE = 1
SATISFY = 2
ALWAYS_PASS = 3
def __init__(self, method):
"""
@ -181,7 +153,6 @@ class Ruleset:
self.method = method
self.configurations = []
def addConfiguration(self, grid, next_state, offsets):
"""
Creates a configuration and saves said configuration.
@ -189,7 +160,6 @@ class Ruleset:
config = Configuration(grid, next_state, offsets)
self.configurations.append(config)
def applyTo(self, f_index, grid, *args):
"""
Depending on a given method, applies ruleset to a cell.
@ -213,6 +183,8 @@ class Ruleset:
vfunc = self._tolerates
elif self.method == Ruleset.Method.SATISFY:
vfunc = self._satisfies
elif self.method == Ruleset.Method.ALWAYS_PASS:
vfunc = lambda *args: True
# Apply the function if possible
if vfunc is not None:
@ -224,7 +196,6 @@ class Ruleset:
return grid.flat[f_index]
def _matches(self, f_index, f_grid, indices, states):
"""
Determines that neighborhood matches expectation exactly.
@ -233,7 +204,6 @@ class Ruleset:
"""
return not np.count_nonzero(f_grid[indices] ^ states)
def _tolerates(self, f_index, f_grid, indices, states, tolerance):
"""
Determines that neighborhood matches expectation within tolerance.
@ -244,7 +214,6 @@ class Ruleset:
non_matches = np.count_nonzero(f_grid[inices] ^ states)
return (non_matches / len(f_grid)) >= tolerance
def _satisfies(self, f_index, f_grid, indices, states, valid_func):
"""
Allows custom function to relay next state of given cell.
@ -254,4 +223,3 @@ class Ruleset:
"""
return valid_func(f_index, f_grid, indices, states)

102
src/util.py Normal file
View File

@ -0,0 +1,102 @@
"""
A collection of utilities that can ease construction of CAMs.
@author: jrpotter
@date: June 4th, 2015
"""
import re
import ruleset as rs
import exceptions as ce
def flatten(coordinates, grid):
"""
Given the coordinates of a matrix, returns the index of the flat matrix.
This is merely a convenience function to convert between N-dimensional space to 1D.
"""
index = 0
gridprod = 1
for i in reversed(range(len(coordinates))):
index += coordinates[i] * gridprod
gridprod *= grid.shape[i]
return index
class CAMParser:
"""
The following builds rulesets based on the passed string.
Following notation is supported:
* MCell Notation (x/y)
* RLE Format (By/Sx)
For reference: http://en.wikipedia.org/wiki/Life-like_cellular_automaton
"""
RLE_FORMAT = r'B\d*/S\d*$'
MCELL_FORMAT = r'\d*/\d*$'
def __init__(self, notation, cam):
"""
Parses the passed notation and saves values into members.
@sfunc: Represents the function that returns the next given state.
@ruleset: A created ruleset that matches always
@offsets: Represents the Moore neighborhood corresponding to the given CAM
"""
self.sfunc = None
self.offsets = rs.Configuration.moore(cam.master)
self.ruleset = rs.Ruleset(rs.Ruleset.Method.ALWAYS_PASS)
if re.match(CAMParser.MCELL_FORMAT, notation):
x, y = notation.split('/')
if all(map(self._numasc, [x, y])):
self.sfunc = self._mcell(x, y)
else:
raise ce.InvalidFormat("Non-ascending values in MCELL format")
elif re.match(CAMParser.RLE_FORMAT, notation):
B, S = map(lambda x: x[1:], notation.split('/'))
if all(map(self._numasc, [B, S])):
self.sfunc = self._mcell(S, B)
else:
raise ce.InvalidFormat("Non-ascending values in RLE format")
else:
raise ce.InvalidFormat("No supported format passed to parser.")
# Add configuration to given CAM
self.ruleset.addConfiguration(cam.master, self.sfunc, self.offsets)
def _numasc(self, value):
"""
Check the given value is a string of ascending numbers.
"""
if all(map(str.isnumeric, value)):
return ''.join(sorted(value)) == value
else:
return False
def _mcell(self, x, y):
"""
MCell Notation
A rule is written as a string x/y where each of x and y is a sequence of distinct digits from 0 to 8, in
numerical order. The presence of a digit d in the x string means that a live cell with d live neighbors
survives into the next generation of the pattern, and the presence of d in the y string means that a dead
cell with d live neighbors becomes alive in the next generation. For instance, in this notation,
Conway's Game of Life is denoted 23/3
"""
x, y = list(map(int, x)), list(map(int, y))
def next_state(f_index, f_grid, indices, states, *args):
total = sum(f_grid[indices])
if f_grid[f_index]:
return int(total in x)
else:
return int(total in y)
return next_state