90 lines
2.1 KiB
Plaintext
90 lines
2.1 KiB
Plaintext
import Mathlib.Data.Set.Basic
|
||
|
||
/-! # Common.Set.Basic
|
||
|
||
Additional theorems and definitions useful in the context of `Set`s.
|
||
-/
|
||
|
||
namespace Set
|
||
|
||
/-! ## Minkowski Sum -/
|
||
|
||
/-
|
||
The Minkowski sum of two `Set`s `s` and `t` is the set
|
||
`s + t = { a + b : a ∈ s, b ∈ t }`.
|
||
-/
|
||
def minkowskiSum {α : Type u} [Add α] (s t : Set α) :=
|
||
{ x | ∃ a ∈ s, ∃ b ∈ t, x = a + b }
|
||
|
||
/--
|
||
The sum of two `Set`s is nonempty **iff** the summands are nonempty.
|
||
-/
|
||
theorem nonempty_minkowski_sum_iff_nonempty_add_nonempty {α : Type u} [Add α]
|
||
{s t : Set α}
|
||
: (minkowskiSum s t).Nonempty ↔ s.Nonempty ∧ t.Nonempty := by
|
||
apply Iff.intro
|
||
· intro h
|
||
have ⟨x, hx⟩ := h
|
||
have ⟨a, ⟨ha, ⟨b, ⟨hb, _⟩⟩⟩⟩ := hx
|
||
apply And.intro
|
||
· exact ⟨a, ha⟩
|
||
· exact ⟨b, hb⟩
|
||
· intro ⟨⟨a, ha⟩, ⟨b, hb⟩⟩
|
||
exact ⟨a + b, ⟨a, ⟨ha, ⟨b, ⟨hb, rfl⟩⟩⟩⟩⟩
|
||
|
||
/-! ## Characteristic Function -/
|
||
|
||
/--
|
||
The characteristic function of a `Set` `S`.
|
||
|
||
It returns `1` if the specified input belongs to `S` and `0` otherwise.
|
||
-/
|
||
def characteristic (S : Set α) (x : α) [Decidable (x ∈ S)] : Nat :=
|
||
if x ∈ S then 1 else 0
|
||
|
||
/-! ## Subsets -/
|
||
|
||
/--
|
||
Every `Set` is a subset of itself.
|
||
-/
|
||
theorem subset_self (S : Set α) : S ⊆ S := by
|
||
intro _ hs
|
||
exact hs
|
||
|
||
/--
|
||
If `Set` `A` is a subset of `Set` `B`, then `A ∪ B = B`.
|
||
-/
|
||
theorem left_subset_union_eq_self {A B : Set α} (h : A ⊆ B)
|
||
: A ∪ B = B := by
|
||
rw [Set.ext_iff]
|
||
intro x
|
||
apply Iff.intro
|
||
· intro hU
|
||
apply Or.elim hU
|
||
· intro hA
|
||
exact h hA
|
||
· simp
|
||
· intro hB
|
||
exact Or.inr hB
|
||
|
||
/--
|
||
If `Set` `B` is a subset of `Set` `A`, then `A ∪ B = B`.
|
||
-/
|
||
theorem right_subset_union_eq_self {A B : Set α} (h : B ⊆ A)
|
||
: A ∪ B = A := by
|
||
rw [Set.union_comm]
|
||
exact left_subset_union_eq_self h
|
||
|
||
/--
|
||
If `x` and `y` are members of `Set` `A`, it follows `{x, y}` is a subset of `A`.
|
||
-/
|
||
theorem mem_mem_imp_pair_subset {x y : α}
|
||
(hx : x ∈ A) (hy : y ∈ A) : ({x, y} : Set α) ⊆ A := by
|
||
intro a ha
|
||
apply Or.elim ha
|
||
· intro hx'
|
||
rwa [hx']
|
||
· intro hy'
|
||
rwa [hy']
|
||
|
||
end Set |