129 lines
3.2 KiB
Plaintext
129 lines
3.2 KiB
Plaintext
import Mathlib.Data.Set.Basic
|
||
|
||
/-! # Enderton.Chapter_1
|
||
|
||
Introduction
|
||
-/
|
||
|
||
namespace Enderton.Set.Chapter_1
|
||
|
||
/-! ### Exercise 1.1
|
||
|
||
Which of the following become true when "∈" is inserted in place of the blank?
|
||
Which become true when "⊆" is inserted?
|
||
-/
|
||
|
||
/--
|
||
The `∅` does not equal the singleton set containing `∅`.
|
||
-/
|
||
lemma empty_ne_singleton_empty (h : ∅ = ({∅} : Set (Set α))) : False :=
|
||
absurd h (Ne.symm $ Set.singleton_ne_empty (∅ : Set α))
|
||
|
||
/-- #### Exercise 1.1a
|
||
|
||
`{∅} ___ {∅, {∅}}`
|
||
-/
|
||
theorem exercise_1_1a
|
||
: {∅} ∈ ({∅, {∅}} : Set (Set (Set α)))
|
||
∧ {∅} ⊆ ({∅, {∅}} : Set (Set (Set α))) := ⟨by simp, by simp⟩
|
||
|
||
/-- #### Exercise 1.1b
|
||
|
||
`{∅} ___ {∅, {{∅}}}`
|
||
-/
|
||
theorem exercise_1_1b
|
||
: {∅} ∉ ({∅, {{∅}}}: Set (Set (Set (Set α))))
|
||
∧ {∅} ⊆ ({∅, {{∅}}}: Set (Set (Set (Set α)))) := by
|
||
refine ⟨?_, by simp⟩
|
||
intro h
|
||
simp at h
|
||
exact empty_ne_singleton_empty h
|
||
|
||
/-- #### Exercise 1.1c
|
||
|
||
`{{∅}} ___ {∅, {∅}}`
|
||
-/
|
||
theorem exercise_1_1c
|
||
: {{∅}} ∉ ({∅, {∅}} : Set (Set (Set (Set α))))
|
||
∧ {{∅}} ⊆ ({∅, {∅}} : Set (Set (Set (Set α)))) := ⟨by simp, by simp⟩
|
||
|
||
/-- #### Exercise 1.1d
|
||
|
||
`{{∅}} ___ {∅, {{∅}}}`
|
||
-/
|
||
theorem exercise_1_1d
|
||
: {{∅}} ∈ ({∅, {{∅}}} : Set (Set (Set (Set α))))
|
||
∧ ¬ {{∅}} ⊆ ({∅, {{∅}}} : Set (Set (Set (Set α)))) := by
|
||
refine ⟨by simp, ?_⟩
|
||
intro h
|
||
simp at h
|
||
exact empty_ne_singleton_empty h
|
||
|
||
/-- #### Exercise 1.1e
|
||
|
||
`{{∅}} ___ {∅, {∅, {∅}}}`
|
||
-/
|
||
theorem exercise_1_1e
|
||
: {{∅}} ∉ ({∅, {∅, {∅}}} : Set (Set (Set (Set α))))
|
||
∧ ¬ {{∅}} ⊆ ({∅, {∅, {∅}}} : Set (Set (Set (Set α)))) := by
|
||
apply And.intro
|
||
· intro h
|
||
simp at h
|
||
rw [Set.ext_iff] at h
|
||
have nh := h ∅
|
||
simp at nh
|
||
exact empty_ne_singleton_empty nh
|
||
· intro h
|
||
simp at h
|
||
rw [Set.ext_iff] at h
|
||
have nh := h {∅}
|
||
simp at nh
|
||
|
||
/-- ### Exercise 1.2
|
||
|
||
Show that no two of the three sets `∅`, `{∅}`, and `{{∅}}` are equal to each
|
||
other.
|
||
-/
|
||
theorem exercise_1_2
|
||
: ∅ ≠ ({∅} : Set (Set α))
|
||
∧ ∅ ≠ ({{∅}} : Set (Set (Set α)))
|
||
∧ {∅} ≠ ({{∅}} : Set (Set (Set α))) := by
|
||
refine ⟨?_, ⟨?_, ?_⟩⟩
|
||
· intro h
|
||
exact empty_ne_singleton_empty h
|
||
· intro h
|
||
exact absurd h (Ne.symm $ Set.singleton_ne_empty ({∅} : Set (Set α)))
|
||
· intro h
|
||
simp at h
|
||
exact empty_ne_singleton_empty h
|
||
|
||
/-- ### Exercise 1.3
|
||
|
||
Show that if `B ⊆ C`, then `𝓟 B ⊆ 𝓟 C`.
|
||
-/
|
||
theorem exercise_1_3 (h : B ⊆ C) : Set.powerset B ⊆ Set.powerset C := by
|
||
intro x hx
|
||
exact Set.Subset.trans hx h
|
||
|
||
/-- ### Exercise 1.4
|
||
|
||
Assume that `x` and `y` are members of a set `B`. Show that
|
||
`{{x}, {x, y}} ∈ 𝓟 𝓟 B`.
|
||
-/
|
||
theorem exercise_1_4 (x y : α) (hx : x ∈ B) (hy : y ∈ B)
|
||
: {{x}, {x, y}} ∈ Set.powerset (Set.powerset B) := by
|
||
unfold Set.powerset
|
||
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq]
|
||
rw [Set.subset_def]
|
||
intro z hz
|
||
simp at hz
|
||
apply Or.elim hz
|
||
· intro h
|
||
rwa [h, Set.mem_setOf_eq, Set.singleton_subset_iff]
|
||
· intro h
|
||
rw [h, Set.mem_setOf_eq]
|
||
exact Set.union_subset
|
||
(Set.singleton_subset_iff.mpr hx)
|
||
(Set.singleton_subset_iff.mpr hy)
|
||
|
||
end Enderton.Set.Chapter_1 |