bookshelf/Bookshelf/Enderton/Set/Chapter_1.lean

129 lines
3.2 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Mathlib.Data.Set.Basic
/-! # Enderton.Chapter_1
Introduction
-/
namespace Enderton.Set.Chapter_1
/-! ### Exercise 1.1
Which of the following become true when "∈" is inserted in place of the blank?
Which become true when "⊆" is inserted?
-/
/--
The `∅` does not equal the singleton set containing `∅`.
-/
lemma empty_ne_singleton_empty (h : ∅ = ({∅} : Set (Set α))) : False :=
absurd h (Ne.symm $ Set.singleton_ne_empty (∅ : Set α))
/-- #### Exercise 1.1a
`{∅} ___ {∅, {∅}}`
-/
theorem exercise_1_1a
: {∅} ∈ ({∅, {∅}} : Set (Set (Set α)))
∧ {∅} ⊆ ({∅, {∅}} : Set (Set (Set α))) := ⟨by simp, by simp⟩
/-- #### Exercise 1.1b
`{∅} ___ {∅, {{∅}}}`
-/
theorem exercise_1_1b
: {∅} ∉ ({∅, {{∅}}}: Set (Set (Set (Set α))))
∧ {∅} ⊆ ({∅, {{∅}}}: Set (Set (Set (Set α)))) := by
refine ⟨?_, by simp⟩
intro h
simp at h
exact empty_ne_singleton_empty h
/-- #### Exercise 1.1c
`{{∅}} ___ {∅, {∅}}`
-/
theorem exercise_1_1c
: {{∅}} ∉ ({∅, {∅}} : Set (Set (Set (Set α))))
∧ {{∅}} ⊆ ({∅, {∅}} : Set (Set (Set (Set α)))) := ⟨by simp, by simp⟩
/-- #### Exercise 1.1d
`{{∅}} ___ {∅, {{∅}}}`
-/
theorem exercise_1_1d
: {{∅}} ∈ ({∅, {{∅}}} : Set (Set (Set (Set α))))
∧ ¬ {{∅}} ⊆ ({∅, {{∅}}} : Set (Set (Set (Set α)))) := by
refine ⟨by simp, ?_⟩
intro h
simp at h
exact empty_ne_singleton_empty h
/-- #### Exercise 1.1e
`{{∅}} ___ {∅, {∅, {∅}}}`
-/
theorem exercise_1_1e
: {{∅}} ∉ ({∅, {∅, {∅}}} : Set (Set (Set (Set α))))
∧ ¬ {{∅}} ⊆ ({∅, {∅, {∅}}} : Set (Set (Set (Set α)))) := by
apply And.intro
· intro h
simp at h
rw [Set.ext_iff] at h
have nh := h ∅
simp at nh
exact empty_ne_singleton_empty nh
· intro h
simp at h
rw [Set.ext_iff] at h
have nh := h {∅}
simp at nh
/-- ### Exercise 1.2
Show that no two of the three sets `∅`, `{∅}`, and `{{∅}}` are equal to each
other.
-/
theorem exercise_1_2
: ∅ ≠ ({∅} : Set (Set α))
∧ ∅ ≠ ({{∅}} : Set (Set (Set α)))
∧ {∅} ≠ ({{∅}} : Set (Set (Set α))) := by
refine ⟨?_, ⟨?_, ?_⟩⟩
· intro h
exact empty_ne_singleton_empty h
· intro h
exact absurd h (Ne.symm $ Set.singleton_ne_empty ({∅} : Set (Set α)))
· intro h
simp at h
exact empty_ne_singleton_empty h
/-- ### Exercise 1.3
Show that if `B ⊆ C`, then `𝓟 B ⊆ 𝓟 C`.
-/
theorem exercise_1_3 (h : B ⊆ C) : Set.powerset B ⊆ Set.powerset C := by
intro x hx
exact Set.Subset.trans hx h
/-- ### Exercise 1.4
Assume that `x` and `y` are members of a set `B`. Show that
`{{x}, {x, y}} ∈ 𝓟 𝓟 B`.
-/
theorem exercise_1_4 (x y : α) (hx : x ∈ B) (hy : y ∈ B)
: {{x}, {x, y}} ∈ Set.powerset (Set.powerset B) := by
unfold Set.powerset
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq]
rw [Set.subset_def]
intro z hz
simp at hz
apply Or.elim hz
· intro h
rwa [h, Set.mem_setOf_eq, Set.singleton_subset_iff]
· intro h
rw [h, Set.mem_setOf_eq]
exact Set.union_subset
(Set.singleton_subset_iff.mpr hx)
(Set.singleton_subset_iff.mpr hy)
end Enderton.Set.Chapter_1