277 lines
7.6 KiB
Plaintext
277 lines
7.6 KiB
Plaintext
import Mathlib.Tactic.Ring
|
||
|
||
/-! # Bookshelf.LTuple.Basic
|
||
|
||
The following is a representation of a (possibly empty) left-biased tuple. A
|
||
left-biased `n`-tuple is defined recursively as follows:
|
||
|
||
```
|
||
⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩
|
||
```
|
||
|
||
Note a `Tuple` exists in Lean already. This implementation differs in two
|
||
notable ways:
|
||
|
||
1. It is left-associative. The built-in `Tuple` instance evaluates e.g.
|
||
`(x₁, x₂, x₃)` as `(x₁, (x₂, x₃))` instead of `((x₁, x₂), x₃)`.
|
||
2. Internally, the built-in `Tuple` instance is syntactic sugar for nested
|
||
`Prod` instances. Unlike this implementation, an `LTuple` is a homogeneous
|
||
collection.
|
||
|
||
In general, prefer using `Prod` over `LTuple`. This exists primarily to solve
|
||
certain theorems outlined in [^1].
|
||
|
||
[^1]: Enderton, Herbert B. A Mathematical Introduction to Logic. 2nd ed. San
|
||
Diego: Harcourt/Academic Press, 2001.
|
||
-/
|
||
|
||
/--
|
||
#### LTuple
|
||
|
||
A left-biased, possibly empty, homogeneous `Tuple`-like structure..
|
||
-/
|
||
inductive LTuple : (α : Type u) → (size : Nat) → Type u where
|
||
| nil : LTuple α 0
|
||
| snoc : LTuple α n → α → LTuple α (n + 1)
|
||
|
||
namespace LTuple
|
||
|
||
/-! ## Coercions -/
|
||
|
||
scoped instance : CoeOut (LTuple α (min (m + n) m)) (LTuple α m) where
|
||
coe := cast (by simp)
|
||
|
||
scoped instance : Coe (LTuple α 0) (LTuple α (min n 0)) where
|
||
coe := cast (by rw [Nat.min_zero])
|
||
|
||
scoped instance : Coe (LTuple α 0) (LTuple α (min 0 n)) where
|
||
coe := cast (by rw [Nat.zero_min])
|
||
|
||
scoped instance : Coe (LTuple α n) (LTuple α (min n n)) where
|
||
coe := cast (by simp)
|
||
|
||
scoped instance : Coe (LTuple α n) (LTuple α (0 + n)) where
|
||
coe := cast (by simp)
|
||
|
||
scoped instance : Coe (LTuple α (min m n + 1)) (LTuple α (min (m + 1) (n + 1))) where
|
||
coe := cast (by rw [Nat.min_succ_succ])
|
||
|
||
scoped instance : Coe (LTuple α m) (LTuple α (min (m + n) m)) where
|
||
coe := cast (by simp)
|
||
|
||
/-! ### Equality -/
|
||
|
||
/--
|
||
Two values `a` and `b` are equal **iff** `[a] = [b]`.
|
||
-/
|
||
theorem eq_iff_singleton : (a = b) ↔ (snoc a nil = snoc b nil) := by
|
||
apply Iff.intro
|
||
· intro h; rw [h]
|
||
· intro h; injection h
|
||
|
||
/--
|
||
Two lists are equal **iff** their heads and tails are equal.
|
||
-/
|
||
theorem eq_iff_snoc {t₁ t₂ : LTuple α n}
|
||
: (a = b ∧ t₁ = t₂) ↔ (snoc t₁ a = snoc t₂ b) := by
|
||
apply Iff.intro
|
||
· intro ⟨h₁, h₂ ⟩; rw [h₁, h₂]
|
||
· intro h
|
||
injection h with _ h₁ h₂
|
||
exact And.intro h₂ h₁
|
||
|
||
/--
|
||
Implements decidable equality for `Tuple α m`, provided `a` has decidable
|
||
equality.
|
||
-/
|
||
protected def hasDecEq [DecidableEq α] (t₁ t₂ : LTuple α n)
|
||
: Decidable (Eq t₁ t₂) :=
|
||
match t₁, t₂ with
|
||
| nil, nil => isTrue rfl
|
||
| snoc as a, snoc bs b =>
|
||
match LTuple.hasDecEq as bs with
|
||
| isFalse np => isFalse (fun h => absurd (eq_iff_snoc.mpr h).right np)
|
||
| isTrue hp =>
|
||
if hq : a = b then
|
||
isTrue (eq_iff_snoc.mp $ And.intro hq hp)
|
||
else
|
||
isFalse (fun h => absurd (eq_iff_snoc.mpr h).left hq)
|
||
|
||
instance [DecidableEq α] : DecidableEq (LTuple α n) := LTuple.hasDecEq
|
||
|
||
/-! ## Basic API -/
|
||
|
||
/--
|
||
Returns the number of entries in an `LTuple`.
|
||
-/
|
||
def size (_ : LTuple α n) : Nat := n
|
||
|
||
/--
|
||
Returns all but the last entry of an `LTuple`.
|
||
-/
|
||
def init : (t : LTuple α (n + 1)) → LTuple α n
|
||
| snoc vs _ => vs
|
||
|
||
/--
|
||
Returns the last entry of an `LTuple`.
|
||
-/
|
||
def last : LTuple α (n + 1) → α
|
||
| snoc _ v => v
|
||
|
||
/--
|
||
Prepends an entry to an `LTuple`.
|
||
-/
|
||
def cons : LTuple α n → α → LTuple α (n + 1)
|
||
| nil, a => snoc nil a
|
||
| snoc ts t, a => snoc (cons ts a) t
|
||
|
||
/-! ## Concatenation -/
|
||
|
||
/--
|
||
Joins two `LTuple`s together end to end.
|
||
-/
|
||
def concat : LTuple α m → LTuple α n → LTuple α (m + n)
|
||
| is, nil => is
|
||
| is, snoc ts t => snoc (concat is ts) t
|
||
|
||
/--
|
||
Concatenating an `LTuple` with `nil` yields the original `LTuple`.
|
||
-/
|
||
theorem self_concat_nil_eq_self (t : LTuple α m) : concat t nil = t :=
|
||
match t with
|
||
| nil => rfl
|
||
| snoc _ _ => rfl
|
||
|
||
/--
|
||
Concatenating `nil` with an `LTuple` yields the original `LTuple`.
|
||
-/
|
||
theorem nil_concat_self_eq_self (t : LTuple α m) : concat nil t = t := by
|
||
induction t with
|
||
| nil => unfold concat; simp
|
||
| @snoc n as a ih =>
|
||
unfold concat
|
||
rw [ih]
|
||
suffices HEq (snoc (cast (_ : LTuple α n = LTuple α (0 + n)) as) a) ↑(snoc as a)
|
||
from eq_of_heq this
|
||
have h₁ := Eq.recOn
|
||
(motive := fun x h => HEq
|
||
(snoc (cast (show LTuple α n = LTuple α x by rw [h]) as) a)
|
||
(snoc as a))
|
||
(show n = 0 + n by simp)
|
||
HEq.rfl
|
||
exact Eq.recOn
|
||
(motive := fun x h => HEq
|
||
(snoc (cast (_ : LTuple α n = LTuple α (0 + n)) as) a)
|
||
(cast h (snoc as a)))
|
||
(show LTuple α (n + 1) = LTuple α (0 + (n + 1)) by simp)
|
||
h₁
|
||
|
||
/--
|
||
Concatenating an `LTuple` to a nonempty `LTuple` moves `concat` calls closer to
|
||
the expression leaves.
|
||
-/
|
||
theorem concat_snoc_snoc_concat {bs : LTuple α n}
|
||
: concat as (snoc bs b) = snoc (concat as bs) b :=
|
||
rfl
|
||
|
||
/--
|
||
`snoc` is equivalent to concatenating the `init` and `last` elements of an
|
||
`LTuple` together.
|
||
-/
|
||
theorem snoc_eq_init_concat_last (as : LTuple α m)
|
||
: snoc as a = concat as (snoc nil a) := by
|
||
cases as with
|
||
| nil => rfl
|
||
| snoc _ _ => simp; unfold concat concat; rfl
|
||
|
||
/-! ## Initial Sequences -/
|
||
|
||
/--
|
||
Takes the first `k` entries from an `LTuple` to form a new `LTuple`, or the
|
||
entire `LTuple` if `k` exceeds the size.
|
||
-/
|
||
def take (t : LTuple α n) (k : Nat) : LTuple α (min n k) :=
|
||
if h : n ≤ k then
|
||
cast (by rw [min_eq_left h]) t
|
||
else
|
||
match t with
|
||
| nil => nil
|
||
| @snoc _ n' as a => cast (by rw [min_lt_succ_eq h]) (take as k)
|
||
where
|
||
min_lt_succ_eq {m : Nat} (h : ¬m + 1 ≤ k) : min m k = min (m + 1) k := by
|
||
have h' : k + 1 ≤ m + 1 := Nat.lt_of_not_le h
|
||
simp at h'
|
||
rw [min_eq_right h', min_eq_right (Nat.le_trans h' (Nat.le_succ m))]
|
||
|
||
/--
|
||
Taking no entries from any `LTuple` should yield an empty `LTuple`.
|
||
-/
|
||
theorem self_take_zero_eq_nil (t : LTuple α n) : take t 0 = @nil α := by
|
||
induction t with
|
||
| nil => simp; rfl
|
||
| snoc as a ih => unfold take; simp; rw [ih]; simp
|
||
|
||
/--
|
||
Taking any number of entries from an empty `LTuple` should yield an empty
|
||
`LTuple`.
|
||
-/
|
||
theorem nil_take_zero_eq_nil (k : Nat) : (take (@nil α) k) = @nil α := by
|
||
cases k <;> (unfold take; simp)
|
||
|
||
/--
|
||
Taking `n` entries from an `LTuple` of size `n` should yield the same `LTuple`.
|
||
-/
|
||
theorem self_take_size_eq_self (t : LTuple α n) : take t n = t := by
|
||
cases t with
|
||
| nil => simp; rfl
|
||
| snoc as a => unfold take; simp
|
||
|
||
/--
|
||
Taking `n - 1` elements from an `LTuple` of size `n` yields the same result,
|
||
regardless of the last entry's value.
|
||
-/
|
||
theorem take_subst_last {as : LTuple α n} (a₁ a₂ : α)
|
||
: take (snoc as a₁) n = take (snoc as a₂) n := by
|
||
unfold take
|
||
simp
|
||
|
||
/--
|
||
Taking `n` elements from an `LTuple` of size `n + 1` is the same as invoking
|
||
`init`.
|
||
-/
|
||
theorem init_eq_take_pred (t : LTuple α (n + 1)) : take t n = init t := by
|
||
cases t with
|
||
| snoc as a =>
|
||
unfold init take
|
||
simp
|
||
rw [self_take_size_eq_self]
|
||
simp
|
||
|
||
/--
|
||
If two `LTuple`s are equal, then any initial sequences of these two `LTuple`s
|
||
are also equal.
|
||
-/
|
||
theorem eq_tuple_eq_take {t₁ t₂ : LTuple α n}
|
||
: (t₁ = t₂) → (t₁.take k = t₂.take k) := by
|
||
intro h
|
||
rw [h]
|
||
|
||
/--
|
||
Given an `LTuple` of size `k`, concatenating an arbitrary `LTuple` and taking
|
||
`k` elements yields the original `LTuple`.
|
||
-/
|
||
theorem eq_take_concat {t₁ : LTuple α m} {t₂ : LTuple α n}
|
||
: take (concat t₁ t₂) m = t₁ := by
|
||
induction t₂ with
|
||
| nil =>
|
||
simp
|
||
rw [self_concat_nil_eq_self, self_take_size_eq_self]
|
||
| @snoc n' as a ih =>
|
||
simp
|
||
rw [concat_snoc_snoc_concat]
|
||
unfold take
|
||
simp
|
||
rw [ih]
|
||
simp
|
||
|
||
end LTuple |