97 lines
2.8 KiB
Plaintext
97 lines
2.8 KiB
Plaintext
import Mathlib.Data.List.Sort
|
||
|
||
import Bookshelf.List.Basic
|
||
import Bookshelf.Real.Set.Interval
|
||
|
||
namespace Real
|
||
|
||
open List
|
||
|
||
/--
|
||
A `Partition` is some finite subset of `[a, b]` containing points `a` and `b`.
|
||
|
||
It is assumed that the points of the `Partition` are distinct and sorted. The
|
||
use of a `List` ensures finite-ness.
|
||
-/
|
||
structure Partition where
|
||
xs : List ℝ
|
||
sorted : Sorted LT.lt xs
|
||
has_min_length : xs.length ≥ 2
|
||
|
||
/--
|
||
The length of any list associated with a `Partition` is `> 0`.
|
||
-/
|
||
private lemma length_gt_zero (p : Partition) : p.xs.length > 0 :=
|
||
calc p.xs.length
|
||
_ ≥ 2 := p.has_min_length
|
||
_ > 0 := by simp
|
||
|
||
/--
|
||
The length of any list associated with a `Partition` is `≠ 0`.
|
||
-/
|
||
instance (p : Partition) : NeZero (length p.xs) where
|
||
out := LT.lt.ne' (length_gt_zero p)
|
||
|
||
namespace Partition
|
||
|
||
/--
|
||
The left-most subdivision point of the `Partition`.
|
||
-/
|
||
def left (p : Partition) : ℝ :=
|
||
p.xs.head (neq_nil_iff_length_gt_zero.mpr (length_gt_zero p))
|
||
|
||
/--
|
||
The right-most subdivision point of the `Partition`.
|
||
-/
|
||
def right (p : Partition) : ℝ :=
|
||
p.xs.getLast (neq_nil_iff_length_gt_zero.mpr (length_gt_zero p))
|
||
|
||
/--
|
||
Define `∈` syntax for a `Partition`. We say a real is a member of a partition
|
||
provided it lies somewhere in closed interval `[a, b]`.
|
||
-/
|
||
instance : Membership ℝ Partition where
|
||
mem (x : ℝ) (p : Partition) := p.left ≤ x ∧ x ≤ p.right
|
||
|
||
/--
|
||
Every subdivision point is `≥` the left-most point of the partition.
|
||
-/
|
||
theorem subdivision_point_geq_left {p : Partition} (h : x ∈ p.xs)
|
||
: p.left ≤ x := by
|
||
unfold left
|
||
rw [head_eq_get_zero (exists_mem_iff_neq_nil.mp ⟨x, h⟩)]
|
||
have ⟨i, hi⟩ := mem_iff_exists_get.mp h
|
||
conv => rhs; rw [← hi]
|
||
by_cases hz : i = (0 : Fin (length p.xs))
|
||
· rw [hz]
|
||
simp
|
||
· refine le_of_lt (Sorted.rel_get_of_lt p.sorted ?_)
|
||
rwa [← ne_eq, ← Fin.pos_iff_ne_zero i] at hz
|
||
|
||
/--
|
||
Every subdivision point is `≤` the right-most point of the partition.
|
||
-/
|
||
theorem subdivision_point_leq_right {p : Partition} (h : x ∈ p.xs)
|
||
: x ≤ p.right := by
|
||
unfold right
|
||
have hx := exists_mem_iff_neq_nil.mp ⟨x, h⟩
|
||
rw [getLast_eq_get_length_sub_one hx]
|
||
have ⟨i, hi⟩ := mem_iff_exists_get.mp h
|
||
conv => lhs; rw [← hi]
|
||
have ⟨_, ⟨_, hs⟩⟩ := self_neq_nil_imp_exists_mem.mp hx
|
||
by_cases hz : i = ⟨p.xs.length - 1, by rw [hs]; simp⟩
|
||
· rw [hz]
|
||
· refine le_of_lt (Sorted.rel_get_of_lt p.sorted ?_)
|
||
rw [← ne_eq, Fin.ne_iff_vne] at hz
|
||
rw [Fin.lt_iff_val_lt_val]
|
||
exact lt_of_le_of_ne (le_tsub_of_add_le_right i.2) hz
|
||
|
||
/--
|
||
Every subdivision point of a `Partition` is itself a member of the `Partition`.
|
||
-/
|
||
theorem subdivision_point_mem_partition {p : Partition} (h : x ∈ p.xs)
|
||
: x ∈ p := ⟨subdivision_point_geq_left h, subdivision_point_leq_right h⟩
|
||
|
||
end Partition
|
||
|
||
end Real |