109 lines
2.7 KiB
Plaintext
109 lines
2.7 KiB
Plaintext
/-! # Avigad.Chapter2
|
||
|
||
Dependent Type Theory
|
||
-/
|
||
|
||
/-! #### Exercise 1
|
||
|
||
Define the function `Do_Twice`, as described in Section 2.4.
|
||
-/
|
||
|
||
namespace Avigad.Chapter2
|
||
|
||
namespace ex1
|
||
|
||
def double (x : Nat) := x + x
|
||
def doTwice (f : Nat → Nat) (x : Nat) : Nat := f (f x)
|
||
def doTwiceTwice (f : (Nat → Nat) → (Nat → Nat)) (x : Nat → Nat) := f (f x)
|
||
|
||
#reduce doTwiceTwice doTwice double 2
|
||
|
||
end ex1
|
||
|
||
/-! #### Exercise 2
|
||
|
||
Define the functions `curry` and `uncurry`, as described in Section 2.4.
|
||
-/
|
||
|
||
namespace ex2
|
||
|
||
def curry (f : α × β → γ) : (α → β → γ) :=
|
||
fun α β => f (α, β)
|
||
|
||
def uncurry (f : α → β → γ) : (α × β → γ) :=
|
||
fun x => f x.1 x.2
|
||
|
||
end ex2
|
||
|
||
/-! #### Exercise 3
|
||
|
||
Above, we used the example `vec α n` for vectors of elements of type `α` of
|
||
length `n`. Declare a constant `vec_add` that could represent a function that
|
||
adds two vectors of natural numbers of the same length, and a constant
|
||
`vec_reverse` that can represent a function that reverses its argument. Use
|
||
implicit arguments for parameters that can be inferred. Declare some variables
|
||
nd check some expressions involving the constants that you have declared.
|
||
-/
|
||
|
||
namespace ex3
|
||
|
||
universe u
|
||
axiom vec : Type u → Nat → Type u
|
||
|
||
namespace vec
|
||
|
||
axiom empty : ∀ (α : Type u), vec α 0
|
||
axiom cons : ∀ (α : Type u) (n : Nat), α → vec α n → vec α (n + 1)
|
||
axiom append : ∀ (α : Type u) (n m : Nat), vec α m → vec α n → vec α (n + m)
|
||
axiom add : ∀ {α : Type u} {n : Nat}, vec α n → vec α n → vec α n
|
||
axiom reverse : ∀ {α : Type u} {n : Nat}, vec α n → vec α n
|
||
|
||
end vec
|
||
|
||
-- Check results.
|
||
variable (a b : vec Prop 1)
|
||
variable (c d : vec Prop 2)
|
||
|
||
#check vec.add a b
|
||
-- #check vec.add a c
|
||
#check vec.reverse a
|
||
|
||
end ex3
|
||
|
||
/-! #### Exercise 4
|
||
|
||
Similarly, declare a constant `matrix` so that `matrix α m n` could represent
|
||
the type of `m` by `n` matrices. Declare some constants to represent functions
|
||
on this type, such as matrix addition and multiplication, and (using vec)
|
||
multiplication of a matrix by a vector. Once again, declare some variables and
|
||
check some expressions involving the constants that you have declared.
|
||
-/
|
||
|
||
namespace ex4
|
||
|
||
universe u
|
||
axiom matrix : Type u → Nat → Nat → Type u
|
||
|
||
namespace matrix
|
||
|
||
axiom add : ∀ {α : Type u} {m n : Nat},
|
||
matrix α m n → matrix α m n → matrix α m n
|
||
axiom mul : ∀ {α : Type u} {m n p : Nat},
|
||
matrix α m n → matrix α n p → matrix α m p
|
||
axiom app : ∀ {α : Type u} {m n : Nat},
|
||
matrix α m n → ex3.vec α n → ex3.vec α m
|
||
|
||
end matrix
|
||
|
||
variable (a b : matrix Prop 5 7)
|
||
variable (c : matrix Prop 7 3)
|
||
variable (d : ex3.vec Prop 3)
|
||
|
||
#check matrix.add a b
|
||
-- #check matrix.add a c
|
||
#check matrix.mul a c
|
||
#check matrix.app c d
|
||
|
||
end ex4
|
||
|
||
end Avigad.Chapter2 |