bookshelf/Common/Real/Sequence.tex

45 lines
950 B
TeX

\documentclass{article}
\input{../../preamble}
\newcommand{\lean}[2]{\leanref{../../#1.html\##2}{#2}}
\begin{document}
\header{Sequences}{}
\tableofcontents
\section{Summations}%
\label{sec:summations}
\subsection{\unverified{Arithmetic Series}}%
\label{sub:sum-arithmetic-series}
Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
Then for some $n \in \mathbb{N}$,
$$\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.$$
\begin{proof}
\lean{Common/Real/Sequence/Arithmetic}
{Real.Arithmetic.sum\_recursive\_closed}
\end{proof}
\subsection{\unverified{Geometric Series}}%
\label{sub:sum-geometric-series}
Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
Then for some $n \in \mathbb{N}$,
$$\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$
\begin{proof}
\lean{Common/Real/Sequence/Geometric}
{Real.Geometric.sum\_recursive\_closed}
\end{proof}
\end{document}