62 lines
1.9 KiB
Plaintext
62 lines
1.9 KiB
Plaintext
import Bookshelf.Real.Basic
|
||
import OneVariableCalculus.Real.Set.Partition
|
||
|
||
namespace Real.Function
|
||
|
||
open Partition
|
||
|
||
/--
|
||
Any member of a subinterval of a partition `P` must also be a member of `P`.
|
||
-/
|
||
lemma mem_open_subinterval_imp_mem_partition {p : Partition}
|
||
(hI : I ∈ p.xs.pairwise (fun x₁ x₂ => i(x₁, x₂)))
|
||
(hy : y ∈ I) : y ∈ p := by
|
||
cases h : p.xs with
|
||
| nil =>
|
||
-- By definition, a partition must always have at least two points in the
|
||
-- interval. Discharge the empty case.
|
||
rw [h] at hI
|
||
cases hI
|
||
| cons x ys =>
|
||
have ⟨i, x₁, ⟨x₂, ⟨hx₁, ⟨hx₂, hI'⟩⟩⟩⟩ :=
|
||
List.mem_pairwise_imp_exists_adjacent hI
|
||
have hx₁ : x₁ ∈ p.xs := by
|
||
rw [hx₁]
|
||
let j : Fin (List.length p.xs) := ⟨i.1, Nat.lt_of_lt_pred i.2⟩
|
||
exact List.mem_iff_exists_get.mpr ⟨j, rfl⟩
|
||
have hx₂ : x₂ ∈ p.xs := by
|
||
rw [hx₂]
|
||
let j : Fin (List.length p.xs) := ⟨i.1 + 1, lt_tsub_iff_right.mp i.2⟩
|
||
exact List.mem_iff_exists_get.mpr ⟨j, rfl⟩
|
||
rw [hI'] at hy
|
||
apply And.intro
|
||
· calc p.left
|
||
_ ≤ x₁ := (subdivision_point_mem_partition hx₁).left
|
||
_ ≤ y := le_of_lt hy.left
|
||
· calc y
|
||
_ ≤ x₂ := le_of_lt hy.right
|
||
_ ≤ p.right := (subdivision_point_mem_partition hx₂).right
|
||
|
||
/--
|
||
A function `f` is a `Step` function if there exists a `Partition` `p` such that
|
||
`f` is constant on every open subinterval of `p`.
|
||
-/
|
||
structure Step where
|
||
p : Partition
|
||
f : ∀ x ∈ p, ℝ
|
||
const_open_subintervals :
|
||
∀ (hI : I ∈ p.xs.pairwise (fun x₁ x₂ => i(x₁, x₂))),
|
||
∃ c : ℝ, ∀ (hy : y ∈ I),
|
||
f y (mem_open_subinterval_imp_mem_partition hI hy) = c
|
||
|
||
namespace Step
|
||
|
||
/--
|
||
The set definition of a `Step` function is the region between the constant
|
||
values of the function's subintervals and the real axis.
|
||
-/
|
||
def set_def (f : Step) : Set ℝ² := sorry
|
||
|
||
end Step
|
||
|
||
end Real.Function |