bookshelf/OneVariableCalculus/Apostol/Exercises_1_7.lean

99 lines
3.2 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/-
Exercises 1.7
-/
import OneVariableCalculus.Real.Geometry.Area
import OneVariableCalculus.Real.Geometry.Rectangle
open Real
open Real.Geometry.Area
-- ========================================
-- The properties of area in this set of exercises are to be deduced from the
-- axioms for area stated in the foregoing section.
-- ========================================
-- ----------------------------------------
-- Exercise 1
--
-- Prove that each of the following sets is measurable and has zero area:
-- (a) A set consisting of a single point.
-- (b) A set consisting of a finite number of points in a plane.
-- (c) The union of a finite collection of line segments in a plane.
-- ----------------------------------------
example (p : Point)
: p.set_def ∈ 𝓜
∧ ((h : p.set_def ∈ 𝓜) → area h = 0) :=
sorry
example (S : Set Point) (hf : Set.Finite S)
: ( p ∈ S, p.set_def) ∈ 𝓜
∧ ((h : ( p ∈ S, p.set_def) ∈ 𝓜) → area h = 0) :=
sorry
example (S : Set LineSegment) (hf : Set.Finite S)
: ( s ∈ S, s.set_def) ∈ 𝓜
∧ ((h : ( s ∈ S, s.set_def) ∈ 𝓜) → area h = 0) :=
sorry
-- ----------------------------------------
-- Exercise 2
--
-- Every right triangular region is measurable because it can be obtained as the
-- intersection of two rectangles. Prove that every triangular region is
-- measurable and that its area is one half the product of its base and
-- altitude.
-- ----------------------------------------
-- # TODO
-- ----------------------------------------
-- Exercise 3
--
-- Prove that every trapezoid and every parallelogram is measurable and derive
-- the usual formulas for their areas.
-- ----------------------------------------
-- # TODO
-- ----------------------------------------
-- Exercise 4
--
-- A point `(x, y)` in the plane is called a *lattice point* if both coordinates
-- `x` and `y` are integers. Let `P` be a polygon whose vertices are lattice
-- points inside the polygon and `B` denotes the number on the boundary.
--
-- (a) Prove that the formula is valid for rectangles with sides parallel to the
-- coordinate axes.
-- (b) Prove that the formula is valid for right triangles and parallelograms.
-- (c) Use induction on the number of edges to construct a proof for general
-- polygons.
-- ----------------------------------------
-- # TODO
-- ----------------------------------------
-- Exercise 5
--
-- Prove that a triangle whose vertices are lattice points cannot be
-- equilateral.
--
-- [Hint: Assume there is such a triangle and compute its area in two ways,
-- using exercises 2 and 4.]
-- ----------------------------------------
-- # TODO
-- ----------------------------------------
-- Exercise 6
--
-- Let `A = {1, 2, 3, 4, 5}`, and let `𝓜` denote the class of all subsets of
-- `A`. (There are `32` altogether, counting `A` itself and the empty set `∅`.)
-- For each set `S` in `𝓜`, let `n(S)` denote the number of distinct elements in
-- `S`. If `S = {1, 2, 3, 4}` and `T = {3, 4, 5}`, compute `n(S T)`,
-- `n(S ∩ T)`, `n(S - T)`, and `n(T - S)`. Prove that the set function `n`
-- satisfies the first three axioms for area.
-- ----------------------------------------
-- # TODO