bookshelf/shared/Bookshelf/Real/Function/Step.lean

39 lines
1.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Mathlib.Data.Fin.Basic
import Mathlib.Tactic.NormNum
import Bookshelf.Real.Basic
import Bookshelf.Real.Set.Partition
namespace Real.Function
/--
Any member of a subinterval of a partition `P` must also be a member of `P`.
-/
lemma mem_open_subinterval_imp_mem_partition {p : Partition}
(hI : I ∈ p.xs.pairwise (fun x₁ x₂ => i(x₁, x₂)))
(hy : y ∈ I) : y ∈ p := by
unfold List.pairwise at hI
have ⟨ys, hys⟩ : ∃ ys, List.tail? p.xs = some ys := sorry
conv at hI => arg 2; rw [hys]; simp only
sorry
/--
A `Step` function is a function `f` along with a proof of the existence of some
partition `P` such that `f` is constant on every open subinterval of `P`.
-/
structure Step where
p : Partition
f : ∀ x ∈ p,
const_open_subintervals :
∀ (hI : I ∈ p.xs.pairwise (fun x₁ x₂ => i(x₁, x₂))),
∃ c : , ∀ (hy : y ∈ I),
f y (mem_open_subinterval_imp_mem_partition hI hy) = c
namespace Step
def set_def (f : Step) : Set ℝ² := sorry
-- TODO: Fill out
end Real.Function.Step