bookshelf/OneVariableCalculus/Real/Set/Partition.lean

98 lines
2.8 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Mathlib.Data.List.Sort
import Bookshelf.List.Basic
import Bookshelf.Real.Set.Interval
namespace Real
open List
/--
A `Partition` is some finite subset of `[a, b]` containing points `a` and `b`.
It is assumed that the points of the `Partition` are distinct and sorted. The
use of a `List` ensures finite-ness.
-/
structure Partition where
xs : List
sorted : Sorted LT.lt xs
has_min_length : xs.length ≥ 2
/--
The length of any list associated with a `Partition` is `> 0`.
-/
private lemma length_gt_zero (p : Partition) : p.xs.length > 0 :=
calc p.xs.length
_ ≥ 2 := p.has_min_length
_ > 0 := by simp
/--
The length of any list associated with a `Partition` is `≠ 0`.
-/
instance (p : Partition) : NeZero (length p.xs) where
out := LT.lt.ne' (length_gt_zero p)
namespace Partition
/--
The left-most subdivision point of the `Partition`.
-/
def left (p : Partition) : :=
p.xs.head (neq_nil_iff_length_gt_zero.mpr (length_gt_zero p))
/--
The right-most subdivision point of the `Partition`.
-/
def right (p : Partition) : :=
p.xs.getLast (neq_nil_iff_length_gt_zero.mpr (length_gt_zero p))
/--
Define `∈` syntax for a `Partition`. We say a real is a member of a partition
provided it lies somewhere in closed interval `[a, b]`.
-/
instance : Membership Partition where
mem (x : ) (p : Partition) := p.left ≤ x ∧ x ≤ p.right
/--
Every subdivision point is `≥` the left-most point of the partition.
-/
theorem subdivision_point_geq_left {p : Partition} (h : x ∈ p.xs)
: p.left ≤ x := by
unfold left
rw [head_eq_get_zero (exists_mem_iff_neq_nil.mp ⟨x, h⟩)]
have ⟨i, hi⟩ := mem_iff_exists_get.mp h
conv => rhs; rw [← hi]
by_cases hz : i = (0 : Fin (length p.xs))
· rw [hz]
simp
· refine le_of_lt (Sorted.rel_get_of_lt p.sorted ?_)
rwa [← ne_eq, ← Fin.pos_iff_ne_zero i] at hz
/--
Every subdivision point is `≤` the right-most point of the partition.
-/
theorem subdivision_point_leq_right {p : Partition} (h : x ∈ p.xs)
: x ≤ p.right := by
unfold right
have hx := exists_mem_iff_neq_nil.mp ⟨x, h⟩
rw [getLast_eq_get_length_sub_one hx]
have ⟨i, hi⟩ := mem_iff_exists_get.mp h
conv => lhs; rw [← hi]
have ⟨_, ⟨_, hs⟩⟩ := self_neq_nil_imp_exists_mem.mp hx
by_cases hz : i = ⟨p.xs.length - 1, by rw [hs]; simp⟩
· rw [hz]
simp
· refine le_of_lt (Sorted.rel_get_of_lt p.sorted ?_)
rw [← ne_eq, Fin.ne_iff_vne] at hz
rw [Fin.lt_iff_val_lt_val]
exact lt_of_le_of_ne (le_tsub_of_add_le_right i.2) hz
/--
Every subdivision point of a `Partition` is itself a member of the `Partition`.
-/
theorem subdivision_point_mem_partition {p : Partition} (h : x ∈ p.xs)
: x ∈ p := ⟨subdivision_point_geq_left h, subdivision_point_leq_right h⟩
end Partition
end Real