222 lines
7.1 KiB
Plaintext
222 lines
7.1 KiB
Plaintext
import Mathlib.Data.Real.Basic
|
||
import Mathlib.Data.Set.Pointwise.Basic
|
||
import Mathlib.Tactic.LibrarySearch
|
||
|
||
#check Archimedean
|
||
#check Real.exists_isLUB
|
||
|
||
namespace Real
|
||
|
||
/--
|
||
A property holds for the negation of elements in set `S` if and only if it also
|
||
holds for the elements of the negation of `S`.
|
||
-/
|
||
lemma set_neg_prop_iff_neg_set_prop (S : Set ℝ) (p : ℝ → Prop)
|
||
: (∀ y, y ∈ S → p (-y)) ↔ (∀ y, y ∈ -S → p y) := by
|
||
apply Iff.intro
|
||
· intro h y hy
|
||
rw [← neg_neg y, Set.neg_mem_neg] at hy
|
||
have := h (-y) hy
|
||
simp at this
|
||
exact this
|
||
· intro h y hy
|
||
rw [← Set.neg_mem_neg] at hy
|
||
exact h (-y) hy
|
||
|
||
/--
|
||
The upper bounds of the negation of a set is the negation of the lower bounds of
|
||
the set.
|
||
-/
|
||
lemma upper_bounds_neg_eq_neg_lower_bounds (S : Set ℝ)
|
||
: upperBounds (-S) = -lowerBounds S := by
|
||
suffices (∀ x, x ∈ upperBounds (-S) ↔ x ∈ -(lowerBounds S)) from
|
||
Set.ext this
|
||
intro x
|
||
apply Iff.intro
|
||
· intro hx
|
||
unfold lowerBounds
|
||
show -x ∈ { x | ∀ ⦃a : ℝ⦄, a ∈ S → x ≤ a }
|
||
show ∀ ⦃a : ℝ⦄, a ∈ S → (-x) ≤ a
|
||
intro a ha; rw [neg_le]; revert ha a
|
||
rw [set_neg_prop_iff_neg_set_prop S (fun a => a ≤ x)]
|
||
exact hx
|
||
· intro hx
|
||
unfold upperBounds
|
||
show ∀ ⦃a : ℝ⦄, a ∈ -S → a ≤ x
|
||
rw [← set_neg_prop_iff_neg_set_prop S (fun a => a ≤ x)]
|
||
intro y hy; rw [neg_le]; revert hy y
|
||
exact hx
|
||
|
||
/--
|
||
The negation of the upper bounds of a set is the lower bounds of the negation of
|
||
the set.
|
||
-/
|
||
lemma neg_upper_bounds_eq_lower_bounds_neg (S : Set ℝ)
|
||
: -upperBounds S = lowerBounds (-S) := by
|
||
suffices (∀ x, x ∈ -upperBounds S ↔ x ∈ lowerBounds (-S)) from
|
||
Set.ext this
|
||
intro x
|
||
apply Iff.intro
|
||
· intro hx
|
||
unfold lowerBounds
|
||
show ∀ ⦃a : ℝ⦄, a ∈ -S → x ≤ a
|
||
rw [← set_neg_prop_iff_neg_set_prop S (fun a => x ≤ a)]
|
||
intro y hy; rw [le_neg]; revert hy y
|
||
exact hx
|
||
· intro hx
|
||
unfold upperBounds
|
||
show -x ∈ { x | ∀ ⦃a : ℝ⦄, a ∈ S → a ≤ x }
|
||
show ∀ ⦃a : ℝ⦄, a ∈ S → a ≤ (-x)
|
||
intro a ha; rw [le_neg]; revert ha a
|
||
rw [set_neg_prop_iff_neg_set_prop S (fun a => x ≤ a)]
|
||
exact hx
|
||
|
||
/--
|
||
An element `x` is the least element of the negation of a set if and only if `-x`
|
||
if the greatest element of the set.
|
||
-/
|
||
lemma is_least_neg_set_eq_is_greatest_set_neq (S : Set ℝ)
|
||
: IsLeast (-S) x = IsGreatest S (-x) := by
|
||
unfold IsLeast IsGreatest
|
||
rw [← neg_upper_bounds_eq_lower_bounds_neg S]
|
||
rfl
|
||
|
||
/--
|
||
At least with respect to `ℝ`, `x` is the least upper bound of set `-S` if and
|
||
only if `-x` is the greatest lower bound of `S`.
|
||
-/
|
||
theorem is_lub_neg_set_iff_is_glb_set_neg (S : Set ℝ)
|
||
: IsLUB (-S) x = IsGLB S (-x) :=
|
||
calc IsLUB (-S) x
|
||
_ = IsLeast (upperBounds (-S)) x := rfl
|
||
_ = IsLeast (-lowerBounds S) x := by rw [upper_bounds_neg_eq_neg_lower_bounds S]
|
||
_ = IsGreatest (lowerBounds S) (-x) := by rw [is_least_neg_set_eq_is_greatest_set_neq]
|
||
_ = IsGLB S (-x) := rfl
|
||
|
||
/--
|
||
Theorem I.27
|
||
|
||
Every nonempty set `S` that is bounded below has a greatest lower bound; that
|
||
is, there is a real number `L` such that `L = inf S`.
|
||
-/
|
||
theorem exists_isGLB (S : Set ℝ) (hne : S.Nonempty) (hbdd : BddBelow S)
|
||
: ∃ x, IsGLB S x := by
|
||
-- First we show the negation of a nonempty set bounded below is a nonempty
|
||
-- set bounded above. In that case, we can then apply the completeness axiom
|
||
-- to argue the existence of a supremum.
|
||
have hne' : (-S).Nonempty := Set.nonempty_neg.mpr hne
|
||
have hbdd' : ∃ x, ∀ (y : ℝ), y ∈ -S → y ≤ x := by
|
||
rw [bddBelow_def] at hbdd
|
||
let ⟨lb, lbp⟩ := hbdd
|
||
refine ⟨-lb, ?_⟩
|
||
rw [← set_neg_prop_iff_neg_set_prop S (fun y => y ≤ -lb)]
|
||
intro y hy
|
||
exact neg_le_neg (lbp y hy)
|
||
rw [←bddAbove_def] at hbdd'
|
||
-- Once we have found a supremum for `-S`, we argue the negation of this value
|
||
-- is the same as the infimum of `S`.
|
||
let ⟨ub, ubp⟩ := exists_isLUB (-S) hne' hbdd'
|
||
exact ⟨-ub, (is_lub_neg_set_iff_is_glb_set_neg S).mp ubp⟩
|
||
|
||
/--
|
||
Every real should be less than or equal to the absolute value of its ceiling.
|
||
-/
|
||
lemma leq_nat_abs_ceil_self (x : ℝ) : x ≤ Int.natAbs ⌈x⌉ := by
|
||
by_cases h : x ≥ 0
|
||
· let k : ℤ := ⌈x⌉
|
||
unfold Int.natAbs
|
||
have k' : k = ⌈x⌉ := rfl
|
||
rw [←k']
|
||
have _ : k ≥ 0 := by -- Hint for match below
|
||
rw [k', ge_iff_le]
|
||
exact Int.ceil_nonneg (ge_iff_le.mp h)
|
||
match k with
|
||
| Int.ofNat m => calc x
|
||
_ ≤ ⌈x⌉ := Int.le_ceil x
|
||
_ = Int.ofNat m := by rw [←k']
|
||
· have h' : ((Int.natAbs ⌈x⌉) : ℝ) ≥ 0 := by simp
|
||
calc x
|
||
_ ≤ 0 := le_of_lt (lt_of_not_le h)
|
||
_ ≤ ↑(Int.natAbs ⌈x⌉) := GE.ge.le h'
|
||
|
||
/--
|
||
Theorem I.29
|
||
|
||
For every real `x` there exists a positive integer `n` such that `n > x`.
|
||
-/
|
||
theorem exists_pnat_geq_self (x : ℝ) : ∃ n : ℕ+, ↑n > x := by
|
||
let x' : ℕ+ := ⟨Int.natAbs ⌈x⌉ + 1, by simp⟩
|
||
have h : x < x' := calc x
|
||
_ ≤ Int.natAbs ⌈x⌉ := leq_nat_abs_ceil_self x
|
||
_ < ↑↑(Int.natAbs ⌈x⌉ + 1) := by simp
|
||
_ = x' := rfl
|
||
exact ⟨x', h⟩
|
||
|
||
/--
|
||
Theorem I.30
|
||
|
||
If `x > 0` and if `y` is an arbitrary real number, there exists a positive
|
||
integer `n` such that `nx > y`.
|
||
|
||
This is known as the *Archimedean Property of the Reals*.
|
||
-/
|
||
theorem exists_pnat_mul_self_geq_of_pos {x y : ℝ}
|
||
: x > 0 → ∃ n : ℕ+, n * x > y := by
|
||
intro hx
|
||
let ⟨n, p⟩ := exists_pnat_geq_self (y / x)
|
||
have p' := mul_lt_mul_of_pos_right p hx
|
||
rw [div_mul, div_self (show x ≠ 0 from LT.lt.ne' hx), div_one] at p'
|
||
exact ⟨n, p'⟩
|
||
|
||
/--
|
||
Theorem I.31
|
||
|
||
If three real numbers `a`, `x`, and `y` satisfy the inequalities
|
||
`a ≤ x ≤ a + y / n` for every integer `n ≥ 1`, then `x = a`.
|
||
-/
|
||
theorem forall_pnat_leq_self_leq_frac_imp_eq {x y a : ℝ}
|
||
: (∀ n : ℕ+, a ≤ x ∧ x ≤ a + (y / n)) → x = a := by
|
||
intro h
|
||
match @trichotomous ℝ LT.lt _ x a with
|
||
| -- x = a
|
||
Or.inr (Or.inl r) => exact r
|
||
| -- x < a
|
||
Or.inl r =>
|
||
have z : a < a := lt_of_le_of_lt (h 1).left r
|
||
simp at z
|
||
| -- x > a
|
||
Or.inr (Or.inr r) =>
|
||
let ⟨c, hc⟩ := exists_pos_add_of_lt' r
|
||
let ⟨n, hn⟩ := @exists_pnat_mul_self_geq_of_pos c y hc.left
|
||
have hn := mul_lt_mul_of_pos_left hn $
|
||
have hp : 0 < (↑↑n : ℝ) := by simp
|
||
show 0 < ((↑↑n)⁻¹ : ℝ) from inv_pos.mpr hp
|
||
rw [inv_mul_eq_div, ←mul_assoc, mul_comm (n⁻¹ : ℝ), ←one_div, mul_one_div] at hn
|
||
simp at hn
|
||
have hn := add_lt_add_left hn a
|
||
have := calc a + y / ↑↑n
|
||
_ < a + c := hn
|
||
_ = x := hc.right
|
||
_ ≤ a + y / ↑↑n := (h n).right
|
||
simp at this
|
||
|
||
/--
|
||
Theorem I.32a
|
||
|
||
Let `h` be a given positive number and let `S` be a set of real numbers. If `S`
|
||
has a supremum, then for some `x` in `S` we have `x > sup S - h`.
|
||
-/
|
||
theorem arb_close_to_sup (S : Set ℝ) (s h : ℝ) (hp : h > 0)
|
||
: IsLUB S s → ∃ x : S, x > s - h := sorry
|
||
|
||
/--
|
||
Theorem I.32b
|
||
|
||
Let `h` be a given positive number and let `S` be a set of real numbers. If `S`
|
||
has an infimum, then for some `x` in `S` we have `x < inf S + h`.
|
||
-/
|
||
theorem arb_close_to_inf (S : Set ℝ) (s h : ℝ) (hp : h > 0)
|
||
: IsGLB S s → ∃ x : S, x < s + h := sorry
|
||
|
||
end Real
|