212 lines
5.3 KiB
Plaintext
212 lines
5.3 KiB
Plaintext
import Common.Nat.Basic
|
||
import Common.Set.Basic
|
||
import Mathlib.Data.Finset.Card
|
||
import Mathlib.Data.Set.Finite
|
||
|
||
/-! # Common.Set.Finite
|
||
|
||
Additional theorems around finite sets.
|
||
-/
|
||
|
||
namespace Set
|
||
|
||
/-! ## Definitions -/
|
||
|
||
/--
|
||
A set `A` is equinumerous to a set `B` (written `A ≈ B`) if and only if there is
|
||
a one-to-one function from `A` onto `B`.
|
||
-/
|
||
def Equinumerous (A : Set α) (B : Set β) : Prop := ∃ F, Set.BijOn F A B
|
||
|
||
infix:50 " ≈ " => Equinumerous
|
||
|
||
theorem equinumerous_def (A : Set α) (B : Set β)
|
||
: A ≈ B ↔ ∃ F, Set.BijOn F A B := Iff.rfl
|
||
|
||
/--
|
||
A set `A` is not equinumerous to a set `B` (written `A ≉ B`) if and only if
|
||
there is no one-to-one function from `A` onto `B`.
|
||
-/
|
||
def NotEquinumerous (A : Set α) (B : Set β) : Prop := ¬ Equinumerous A B
|
||
|
||
infix:50 " ≉ " => NotEquinumerous
|
||
|
||
@[simp]
|
||
theorem not_equinumerous_def : A ≉ B ↔ ∀ F, ¬ Set.BijOn F A B := by
|
||
apply Iff.intro
|
||
· intro h
|
||
unfold NotEquinumerous Equinumerous at h
|
||
simp only [not_exists] at h
|
||
exact h
|
||
· intro h
|
||
unfold NotEquinumerous Equinumerous
|
||
simp only [not_exists]
|
||
exact h
|
||
|
||
/--
|
||
For any set `A`, `A ≈ A`.
|
||
-/
|
||
theorem equinumerous_refl (A : Set α)
|
||
: A ≈ A := by
|
||
refine ⟨fun x => x, ?_⟩
|
||
unfold Set.BijOn Set.MapsTo Set.InjOn Set.SurjOn
|
||
simp only [imp_self, implies_true, Set.image_id', true_and]
|
||
exact Eq.subset rfl
|
||
|
||
/--
|
||
For any sets `A` and `B`, if `A ≈ B`. then `B ≈ A`.
|
||
-/
|
||
theorem equinumerous_symm [Nonempty α] {A : Set α} {B : Set β}
|
||
(h : A ≈ B) : B ≈ A := by
|
||
have ⟨F, hF⟩ := h
|
||
refine ⟨Function.invFunOn F A, ?_⟩
|
||
exact (Set.bijOn_comm $ Set.BijOn.invOn_invFunOn hF).mpr hF
|
||
|
||
/--
|
||
For any sets `A`, `B`, and `C`, if `A ≈ B` and `B ≈ C`, then `A ≈ C`.
|
||
-/
|
||
theorem equinumerous_trans {A : Set α} {B : Set β} {C : Set γ}
|
||
(h₁ : A ≈ B) (h₂ : B ≈ C)
|
||
: ∃ H, Set.BijOn H A C := by
|
||
have ⟨F, hF⟩ := h₁
|
||
have ⟨G, hG⟩ := h₂
|
||
exact ⟨G ∘ F, Set.BijOn.comp hG hF⟩
|
||
|
||
/--
|
||
If two sets are equal, they are trivially equinumerous.
|
||
-/
|
||
theorem eq_imp_equinumerous {A B : Set α} (h : A = B)
|
||
: A ≈ B := by
|
||
have := equinumerous_refl A
|
||
conv at this => right; rw [h]
|
||
exact this
|
||
|
||
/-! ## Finite Sets -/
|
||
|
||
/--
|
||
A set is finite if and only if it is equinumerous to a natural number.
|
||
-/
|
||
axiom finite_iff_equinumerous_nat {α : Type _} {S : Set α}
|
||
: Set.Finite S ↔ ∃ n : ℕ, S ≈ Set.Iio n
|
||
|
||
/-! ## Emptyset -/
|
||
|
||
/--
|
||
Any set equinumerous to the emptyset is the emptyset.
|
||
-/
|
||
@[simp]
|
||
theorem equinumerous_zero_iff_emptyset {S : Set α}
|
||
: S ≈ Set.Iio 0 ↔ S = ∅ := by
|
||
apply Iff.intro
|
||
· intro ⟨f, hf⟩
|
||
by_contra nh
|
||
rw [← Ne.def, ← Set.nonempty_iff_ne_empty] at nh
|
||
have ⟨x, hx⟩ := nh
|
||
have := hf.left hx
|
||
simp at this
|
||
· intro h
|
||
rw [h]
|
||
refine ⟨fun _ => ⊥, ?_, ?_, ?_⟩
|
||
· intro _ hx
|
||
simp at hx
|
||
· intro _ hx
|
||
simp at hx
|
||
· unfold SurjOn
|
||
simp only [bot_eq_zero', image_empty]
|
||
show ∀ x, x ∈ Set.Iio 0 → x ∈ ∅
|
||
intro _ hx
|
||
simp at hx
|
||
|
||
/--
|
||
Empty sets are always equinumerous, regardless of their underlying type.
|
||
-/
|
||
theorem equinumerous_emptyset_emptyset [Bot β]
|
||
: (∅ : Set α) ≈ (∅ : Set β) := by
|
||
refine ⟨fun _ => ⊥, ?_, ?_, ?_⟩
|
||
· intro _ hx
|
||
simp at hx
|
||
· intro _ hx
|
||
simp at hx
|
||
· unfold SurjOn
|
||
simp
|
||
|
||
/--
|
||
For all natural numbers `m, n`, `m⁺ - n⁺ ≈ m - n`.
|
||
-/
|
||
theorem succ_diff_succ_equinumerous_diff {m n : ℕ}
|
||
: Set.Iio m.succ \ Set.Iio n.succ ≈ Set.Iio m \ Set.Iio n := by
|
||
refine Set.equinumerous_symm ⟨fun x => x + 1, ?_, ?_, ?_⟩
|
||
· intro x ⟨hx₁, hx₂⟩
|
||
simp at hx₁ hx₂ ⊢
|
||
exact ⟨Nat.le_add_of_sub_le hx₂, Nat.add_lt_of_lt_sub hx₁⟩
|
||
· intro _ _ _ _ h
|
||
simp only [add_left_inj] at h
|
||
exact h
|
||
· unfold Set.SurjOn Set.image
|
||
rw [Set.subset_def]
|
||
intro x ⟨hx₁, hx₂⟩
|
||
simp only [
|
||
Set.Iio_diff_Iio,
|
||
gt_iff_lt,
|
||
not_lt,
|
||
ge_iff_le,
|
||
Set.mem_setOf_eq,
|
||
Set.mem_Iio
|
||
] at hx₁ hx₂ ⊢
|
||
have ⟨p, hp⟩ : ∃ p : ℕ, x = p.succ := by
|
||
refine Nat.exists_eq_succ_of_ne_zero ?_
|
||
have := calc 0
|
||
_ < n.succ := by simp
|
||
_ ≤ x := hx₂
|
||
exact Nat.pos_iff_ne_zero.mp this
|
||
refine ⟨p, ⟨?_, ?_⟩, hp.symm⟩
|
||
· rw [hp] at hx₂
|
||
exact Nat.lt_succ.mp hx₂
|
||
· rw [hp] at hx₁
|
||
exact Nat.succ_lt_succ_iff.mp hx₁
|
||
|
||
/--
|
||
For all natural numbers `m, n`, `m - n ∪ {m} ≈ m - n`.
|
||
-/
|
||
theorem diff_union_equinumerous_succ_diff {m n : ℕ} (hn: n ≤ m)
|
||
: Set.Iio m \ Set.Iio n ∪ {m} ≈ Set.Iio (Nat.succ m) \ Set.Iio n := by
|
||
refine ⟨fun x => x, ?_, ?_, ?_⟩
|
||
· intro x hx
|
||
simp at hx ⊢
|
||
apply Or.elim hx
|
||
· intro hx₁
|
||
rw [hx₁]
|
||
exact ⟨hn, by simp⟩
|
||
· intro ⟨hx₁, hx₂⟩
|
||
exact ⟨hx₁, calc x
|
||
_ < m := hx₂
|
||
_ < m + 1 := by simp⟩
|
||
· intro _ _ _ _ h
|
||
exact h
|
||
· unfold Set.SurjOn Set.image
|
||
rw [Set.subset_def]
|
||
simp only [
|
||
Set.Iio_diff_Iio,
|
||
gt_iff_lt,
|
||
not_lt,
|
||
ge_iff_le,
|
||
Set.mem_Ico,
|
||
Set.union_singleton,
|
||
lt_self_iff_false,
|
||
and_false,
|
||
Set.mem_insert_iff,
|
||
exists_eq_right,
|
||
Set.mem_setOf_eq,
|
||
and_imp
|
||
]
|
||
intro x hn hm
|
||
apply Or.elim (Nat.lt_or_eq_of_lt hm)
|
||
· intro hx
|
||
right
|
||
exact ⟨hn, hx⟩
|
||
· intro hx
|
||
left
|
||
exact hx
|
||
|
||
end Set
|