bookshelf/Common/Set/Equinumerous.lean

212 lines
5.3 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Common.Nat.Basic
import Common.Set.Basic
import Mathlib.Data.Finset.Card
import Mathlib.Data.Set.Finite
/-! # Common.Set.Finite
Additional theorems around finite sets.
-/
namespace Set
/-! ## Definitions -/
/--
A set `A` is equinumerous to a set `B` (written `A ≈ B`) if and only if there is
a one-to-one function from `A` onto `B`.
-/
def Equinumerous (A : Set α) (B : Set β) : Prop := ∃ F, Set.BijOn F A B
infix:50 " ≈ " => Equinumerous
theorem equinumerous_def (A : Set α) (B : Set β)
: A ≈ B ↔ ∃ F, Set.BijOn F A B := Iff.rfl
/--
A set `A` is not equinumerous to a set `B` (written `A ≉ B`) if and only if
there is no one-to-one function from `A` onto `B`.
-/
def NotEquinumerous (A : Set α) (B : Set β) : Prop := ¬ Equinumerous A B
infix:50 " ≉ " => NotEquinumerous
@[simp]
theorem not_equinumerous_def : A ≉ B ↔ ∀ F, ¬ Set.BijOn F A B := by
apply Iff.intro
· intro h
unfold NotEquinumerous Equinumerous at h
simp only [not_exists] at h
exact h
· intro h
unfold NotEquinumerous Equinumerous
simp only [not_exists]
exact h
/--
For any set `A`, `A ≈ A`.
-/
theorem equinumerous_refl (A : Set α)
: A ≈ A := by
refine ⟨fun x => x, ?_⟩
unfold Set.BijOn Set.MapsTo Set.InjOn Set.SurjOn
simp only [imp_self, implies_true, Set.image_id', true_and]
exact Eq.subset rfl
/--
For any sets `A` and `B`, if `A ≈ B`. then `B ≈ A`.
-/
theorem equinumerous_symm [Nonempty α] {A : Set α} {B : Set β}
(h : A ≈ B) : B ≈ A := by
have ⟨F, hF⟩ := h
refine ⟨Function.invFunOn F A, ?_⟩
exact (Set.bijOn_comm $ Set.BijOn.invOn_invFunOn hF).mpr hF
/--
For any sets `A`, `B`, and `C`, if `A ≈ B` and `B ≈ C`, then `A ≈ C`.
-/
theorem equinumerous_trans {A : Set α} {B : Set β} {C : Set γ}
(h₁ : A ≈ B) (h₂ : B ≈ C)
: ∃ H, Set.BijOn H A C := by
have ⟨F, hF⟩ := h₁
have ⟨G, hG⟩ := h₂
exact ⟨G ∘ F, Set.BijOn.comp hG hF⟩
/--
If two sets are equal, they are trivially equinumerous.
-/
theorem eq_imp_equinumerous {A B : Set α} (h : A = B)
: A ≈ B := by
have := equinumerous_refl A
conv at this => right; rw [h]
exact this
/-! ## Finite Sets -/
/--
A set is finite if and only if it is equinumerous to a natural number.
-/
axiom finite_iff_equinumerous_nat {α : Type _} {S : Set α}
: Set.Finite S ↔ ∃ n : , S ≈ Set.Iio n
/-! ## Emptyset -/
/--
Any set equinumerous to the emptyset is the emptyset.
-/
@[simp]
theorem equinumerous_zero_iff_emptyset {S : Set α}
: S ≈ Set.Iio 0 ↔ S = ∅ := by
apply Iff.intro
· intro ⟨f, hf⟩
by_contra nh
rw [← Ne.def, ← Set.nonempty_iff_ne_empty] at nh
have ⟨x, hx⟩ := nh
have := hf.left hx
simp at this
· intro h
rw [h]
refine ⟨fun _ => ⊥, ?_, ?_, ?_⟩
· intro _ hx
simp at hx
· intro _ hx
simp at hx
· unfold SurjOn
simp only [bot_eq_zero', image_empty]
show ∀ x, x ∈ Set.Iio 0 → x ∈ ∅
intro _ hx
simp at hx
/--
Empty sets are always equinumerous, regardless of their underlying type.
-/
theorem equinumerous_emptyset_emptyset [Bot β]
: (∅ : Set α) ≈ (∅ : Set β) := by
refine ⟨fun _ => ⊥, ?_, ?_, ?_⟩
· intro _ hx
simp at hx
· intro _ hx
simp at hx
· unfold SurjOn
simp
/--
For all natural numbers `m, n`, `m⁺ - n⁺ ≈ m - n`.
-/
theorem succ_diff_succ_equinumerous_diff {m n : }
: Set.Iio m.succ \ Set.Iio n.succ ≈ Set.Iio m \ Set.Iio n := by
refine Set.equinumerous_symm ⟨fun x => x + 1, ?_, ?_, ?_⟩
· intro x ⟨hx₁, hx₂⟩
simp at hx₁ hx₂ ⊢
exact ⟨Nat.le_add_of_sub_le hx₂, Nat.add_lt_of_lt_sub hx₁⟩
· intro _ _ _ _ h
simp only [add_left_inj] at h
exact h
· unfold Set.SurjOn Set.image
rw [Set.subset_def]
intro x ⟨hx₁, hx₂⟩
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.mem_setOf_eq,
Set.mem_Iio
] at hx₁ hx₂ ⊢
have ⟨p, hp⟩ : ∃ p : , x = p.succ := by
refine Nat.exists_eq_succ_of_ne_zero ?_
have := calc 0
_ < n.succ := by simp
_ ≤ x := hx₂
exact Nat.pos_iff_ne_zero.mp this
refine ⟨p, ⟨?_, ?_⟩, hp.symm⟩
· rw [hp] at hx₂
exact Nat.lt_succ.mp hx₂
· rw [hp] at hx₁
exact Nat.succ_lt_succ_iff.mp hx₁
/--
For all natural numbers `m, n`, `m - n {m} ≈ m - n`.
-/
theorem diff_union_equinumerous_succ_diff {m n : } (hn: n ≤ m)
: Set.Iio m \ Set.Iio n {m} ≈ Set.Iio (Nat.succ m) \ Set.Iio n := by
refine ⟨fun x => x, ?_, ?_, ?_⟩
· intro x hx
simp at hx ⊢
apply Or.elim hx
· intro hx₁
rw [hx₁]
exact ⟨hn, by simp⟩
· intro ⟨hx₁, hx₂⟩
exact ⟨hx₁, calc x
_ < m := hx₂
_ < m + 1 := by simp⟩
· intro _ _ _ _ h
exact h
· unfold Set.SurjOn Set.image
rw [Set.subset_def]
simp only [
Set.Iio_diff_Iio,
gt_iff_lt,
not_lt,
ge_iff_le,
Set.mem_Ico,
Set.union_singleton,
lt_self_iff_false,
and_false,
Set.mem_insert_iff,
exists_eq_right,
Set.mem_setOf_eq,
and_imp
]
intro x hn hm
apply Or.elim (Nat.lt_or_eq_of_lt hm)
· intro hx
right
exact ⟨hn, hx⟩
· intro hx
left
exact hx
end Set