34 lines
784 B
Plaintext
34 lines
784 B
Plaintext
import Common.Geometry.Point
|
||
import Common.Set.Partition
|
||
|
||
/-! # Common.Geometry.StepFunction
|
||
|
||
Characterization of step functions.
|
||
-/
|
||
|
||
namespace Geometry
|
||
|
||
open Set Partition
|
||
|
||
/--
|
||
A function `f`, whose domain is a closed interval `[a, b]`, is a `StepFunction`
|
||
if there exists a `Partition` `P = {x₀, x₁, …, xₙ}` of `[a, b]` such that `f` is
|
||
constant on each open subinterval of `P`.
|
||
-/
|
||
structure StepFunction where
|
||
p : Partition ℝ
|
||
toFun : ∀ x ∈ p.toIcc, ℝ
|
||
const_open_subintervals :
|
||
∀ (hI : I ∈ p.openSubintervals), ∃ c, ∀ (hy : y ∈ I),
|
||
toFun y (mem_open_subinterval_mem_closed_interval hI hy) = c
|
||
|
||
namespace StepFunction
|
||
|
||
/--
|
||
The ordinate set of the function.
|
||
-/
|
||
def toSet (s : StepFunction) : Set Point := sorry
|
||
|
||
end StepFunction
|
||
|
||
end Geometry |