165 lines
4.5 KiB
Plaintext
165 lines
4.5 KiB
Plaintext
import MathematicalIntroductionLogic.Tuple.Basic
|
||
|
||
/--
|
||
The following describes a so-called "generic" tuple. Like a `Tuple`, an
|
||
`n`-tuple is defined recursively like so:
|
||
|
||
`⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩`
|
||
|
||
Unlike `Tuple`, a "generic" tuple bends the syntax above further. For example,
|
||
both tuples above are equivalent to:
|
||
|
||
`⟨⟨x₁, ..., xₘ⟩, xₘ₊₁, ..., xₙ⟩`
|
||
|
||
for some `1 ≤ m ≤ n`. This distinction is purely syntactic, but necessary to
|
||
prove certain theorems (e.g. `Chapter0.lemma_0a`). In other words, `Tuple` is an
|
||
always-normalized variant of an `GTuple`. In general, prefer it over this when
|
||
working within Enderton's book.
|
||
-/
|
||
inductive GTuple : (α : Type u) → (size : Nat × Nat) → Type u where
|
||
| nil : GTuple α (0, 0)
|
||
| snoc : GTuple α (p, q) → Tuple α r → GTuple α (p + q, r)
|
||
|
||
syntax (priority := high) "g[" term,* "]" : term
|
||
|
||
macro_rules
|
||
| `(g[]) => `(GTuple.nil)
|
||
| `(g[$x]) => `(GTuple.snoc g[] t[$x])
|
||
| `(g[g[$xs:term,*], $ys:term,*]) => `(GTuple.snoc g[$xs,*] t[$ys,*])
|
||
| `(g[$x, $xs:term,*]) => `(GTuple.snoc g[] t[$x, $xs,*])
|
||
|
||
namespace GTuple
|
||
|
||
open scoped Tuple
|
||
|
||
-- ========================================
|
||
-- Normalization
|
||
-- ========================================
|
||
|
||
/--
|
||
Converts an `GTuple` into "normal form".
|
||
-/
|
||
def norm : GTuple α (m, n) → Tuple α (m + n)
|
||
| g[] => t[]
|
||
| snoc is ts => Tuple.concat is.norm ts
|
||
|
||
/--
|
||
Normalization of an empty `GTuple` yields an empty `Tuple`.
|
||
-/
|
||
theorem norm_nil_eq_nil : @norm α 0 0 nil = Tuple.nil :=
|
||
rfl
|
||
|
||
/--
|
||
Normalization of a pseudo-empty `GTuple` yields an empty `Tuple`.
|
||
-/
|
||
theorem norm_snoc_nil_nil_eq_nil : @norm α 0 0 (snoc g[] t[]) = t[] := by
|
||
unfold norm norm
|
||
rfl
|
||
|
||
/--
|
||
Normalization elimates `snoc` when the `snd` component is `nil`.
|
||
-/
|
||
theorem norm_snoc_nil_elim {t : GTuple α (p, q)}
|
||
: norm (snoc t t[]) = norm t := by
|
||
cases t with
|
||
| nil => simp; unfold norm norm; rfl
|
||
| snoc tf tl =>
|
||
simp
|
||
conv => lhs; unfold norm
|
||
|
||
/--
|
||
Normalization eliminates `snoc` when the `fst` component is `nil`.
|
||
-/
|
||
theorem norm_nil_snoc_elim {ts : Tuple α n}
|
||
: norm (snoc g[] ts) = cast (by simp) ts := by
|
||
unfold norm norm
|
||
rw [Tuple.nil_concat_self_eq_self]
|
||
|
||
/--
|
||
Normalization distributes across `Tuple.snoc` calls.
|
||
-/
|
||
theorem norm_snoc_snoc_norm
|
||
: norm (snoc as (Tuple.snoc bs b)) = Tuple.snoc (norm (snoc as bs)) b := by
|
||
unfold norm
|
||
rw [←Tuple.concat_snoc_snoc_concat]
|
||
|
||
/--
|
||
Normalizing an `GTuple` is equivalent to concatenating the normalized `fst`
|
||
component with the `snd`.
|
||
-/
|
||
theorem norm_snoc_eq_concat {t₁ : GTuple α (p, q)} {t₂ : Tuple α n}
|
||
: norm (snoc t₁ t₂) = Tuple.concat t₁.norm t₂ := by
|
||
conv => lhs; unfold norm
|
||
|
||
-- ========================================
|
||
-- Equality
|
||
-- ========================================
|
||
|
||
/--
|
||
Implements Boolean equality for `GTuple α n` provided `α` has decidable
|
||
equality.
|
||
-/
|
||
instance BEq [DecidableEq α] : BEq (GTuple α n) where
|
||
beq t₁ t₂ := t₁.norm == t₂.norm
|
||
|
||
-- ========================================
|
||
-- Basic API
|
||
-- ========================================
|
||
|
||
/--
|
||
Returns the number of entries in the `GTuple`.
|
||
-/
|
||
def size (_ : GTuple α n) := n
|
||
|
||
/--
|
||
Returns the number of entries in the "shallowest" portion of the `GTuple`. For
|
||
example, the length of `x[x[1, 2], 3, 4]` is `3`, despite its size being `4`.
|
||
-/
|
||
def length : GTuple α n → Nat
|
||
| g[] => 0
|
||
| snoc g[] ts => ts.size
|
||
| snoc _ ts => 1 + ts.size
|
||
|
||
/--
|
||
Returns the first component of our `GTuple`. For example, the first component of
|
||
tuple `x[x[1, 2], 3, 4]` is `t[1, 2]`.
|
||
-/
|
||
def fst : GTuple α (m, n) → Tuple α m
|
||
| g[] => t[]
|
||
| snoc ts _ => ts.norm
|
||
|
||
/--
|
||
Given `GTuple α (m, n)`, the `fst` component is equal to an initial segment of
|
||
size `k` of the tuple in normal form.
|
||
-/
|
||
theorem self_fst_eq_norm_take (t : GTuple α (m, n)) : t.fst = t.norm.take m :=
|
||
match t with
|
||
| g[] => by
|
||
unfold fst
|
||
rw [Tuple.self_take_zero_eq_nil]
|
||
simp
|
||
| snoc tf tl => by
|
||
unfold fst
|
||
conv => rhs; unfold norm
|
||
rw [Tuple.eq_take_concat]
|
||
simp
|
||
|
||
/--
|
||
If the normal form of an `GTuple` is equal to a `Tuple`, the `fst` component
|
||
must be a prefix of the `Tuple`.
|
||
-/
|
||
theorem norm_eq_fst_eq_take {t₁ : GTuple α (m, n)} {t₂ : Tuple α (m + n)}
|
||
: (t₁.norm = t₂) → (t₁.fst = t₂.take m) := by
|
||
intro h
|
||
rw [self_fst_eq_norm_take, h]
|
||
|
||
/--
|
||
Returns the first component of our `GTuple`. For example, the first component of
|
||
tuple `x[x[1, 2], 3, 4]` is `t[3, 4]`.
|
||
-/
|
||
def snd : GTuple α (m, n) → Tuple α n
|
||
| g[] => t[]
|
||
| snoc _ ts => ts
|
||
|
||
end GTuple
|