1286 lines
42 KiB
Plaintext
1286 lines
42 KiB
Plaintext
import Bookshelf.Enderton.Set.Chapter_4
|
||
import Common.Logic.Basic
|
||
import Common.Nat.Basic
|
||
import Common.Set.Basic
|
||
import Common.Set.Equinumerous
|
||
import Common.Set.Function
|
||
import Common.Set.Intervals
|
||
import Mathlib.Data.Finset.Card
|
||
import Mathlib.Data.Set.Finite
|
||
|
||
/-! # Enderton.Set.Chapter_6
|
||
|
||
Cardinal Numbers and the Axiom of Choice
|
||
|
||
NOTE: We choose to use injectivity/surjectivity concepts found in
|
||
`Mathlib.Data.Set.Function` over those in `Mathlib.Init.Function` since the
|
||
former provides noncomputable utilities around obtaining inverse functions
|
||
(namely `Function.invFunOn`).
|
||
-/
|
||
|
||
namespace Enderton.Set.Chapter_6
|
||
|
||
/-- ### Theorem 6B
|
||
|
||
No set is equinumerous to its powerset.
|
||
-/
|
||
theorem theorem_6b (A : Set α)
|
||
: A ≉ 𝒫 A := by
|
||
/-
|
||
> Let `A` be an arbitrary set and `f: A → 𝒫 A`.
|
||
-/
|
||
rw [Set.not_equinumerous_def]
|
||
intro f hf
|
||
unfold Set.BijOn at hf
|
||
/-
|
||
> Define `φ = {a ∈ A | a ∉ f(a)}`.
|
||
-/
|
||
let φ := { a ∈ A | a ∉ f a }
|
||
/-
|
||
> Clearly `φ ∈ 𝒫 A`. Furthermore, for all `a ∈ A`, `φ ≠ f(a)` since `a ∈ φ` if
|
||
> and only if `a ∉ f(a)`. Thus `f` cannot be onto `𝒫 A`. Since `f` was
|
||
> arbitrarily chosen, there exists no one-to-one correspondence between `A` and
|
||
> `𝒫 A`. Since `A` was arbitrarily chosen, there is no set equinumerous to its
|
||
> powerset.
|
||
-/
|
||
suffices ∀ a ∈ A, f a ≠ φ by
|
||
have hφ := hf.right.right (show φ ∈ 𝒫 A by simp)
|
||
have ⟨a, ha⟩ := hφ
|
||
exact absurd ha.right (this a ha.left)
|
||
intro a ha hfa
|
||
by_cases h : a ∈ f a
|
||
· have h' := h
|
||
rw [hfa] at h
|
||
simp only [Set.mem_setOf_eq] at h
|
||
exact absurd h' h.right
|
||
· rw [Set.Subset.antisymm_iff] at hfa
|
||
have := hfa.right ⟨ha, h⟩
|
||
exact absurd this h
|
||
|
||
/-! ### Pigeonhole Principle -/
|
||
|
||
/--
|
||
A subset of a finite set of natural numbers has a max member.
|
||
-/
|
||
lemma subset_finite_max_nat {S' S : Set ℕ}
|
||
(hS : Set.Finite S) (hS' : Set.Nonempty S') (h : S' ⊆ S)
|
||
: ∃ m, m ∈ S' ∧ ∀ n, n ∈ S' → n ≤ m := by
|
||
have ⟨m, hm₁, hm₂⟩ :=
|
||
Set.Finite.exists_maximal_wrt id S' (Set.Finite.subset hS h) hS'
|
||
simp only [id_eq] at hm₂
|
||
refine ⟨m, hm₁, ?_⟩
|
||
intro n hn
|
||
match @trichotomous ℕ LT.lt _ m n with
|
||
| Or.inr (Or.inl r) => exact Nat.le_of_eq r.symm
|
||
| Or.inl r =>
|
||
have := hm₂ n hn (Nat.le_of_lt r)
|
||
exact Nat.le_of_eq this.symm
|
||
| Or.inr (Or.inr r) => exact Nat.le_of_lt r
|
||
|
||
/--
|
||
Auxiliary function to be proven by induction.
|
||
-/
|
||
lemma pigeonhole_principle_aux (n : ℕ)
|
||
: ∀ M, M ⊂ Set.Iio n →
|
||
∀ f : ℕ → ℕ,
|
||
Set.MapsTo f M (Set.Iio n) ∧ Set.InjOn f M →
|
||
¬ Set.SurjOn f M (Set.Iio n) := by
|
||
/-
|
||
> Let
|
||
>
|
||
> `S = {n ∈ ω | ∀ M ⊂ n, every one-to-one function f: M → n is not onto}`. (1)
|
||
>
|
||
> We show that (i) `0 ∈ S` and (ii) if `n ∈ S`, then so is `n⁺`. Afterward we
|
||
> prove (iii) the theorem statement.
|
||
-/
|
||
induction n with
|
||
/-
|
||
> #### (i)
|
||
> By definition, `0 = ∅`. Then `0` has no proper subsets. Hence `0 ∈ S`
|
||
> vacuously.
|
||
-/
|
||
| zero =>
|
||
intro _ hM
|
||
unfold Set.Iio at hM
|
||
simp only [Nat.zero_eq, not_lt_zero', Set.setOf_false] at hM
|
||
rw [Set.ssubset_empty_iff_false] at hM
|
||
exact False.elim hM
|
||
/-
|
||
> #### (ii)
|
||
> Suppose `n ∈ S` and `M ⊂ n⁺`. Furthermore, let `f: M → n⁺` be a one-to-one
|
||
> function.
|
||
-/
|
||
| succ n ih =>
|
||
intro M hM f ⟨hf_maps, hf_inj⟩ hf_surj
|
||
/-
|
||
> If `M = ∅`, it vacuously holds that `f` is not onto `n⁺`.
|
||
-/
|
||
by_cases hM' : M = ∅
|
||
· rw [hM', Set.SurjOn_emptyset_Iio_iff_eq_zero] at hf_surj
|
||
simp at hf_surj
|
||
/-
|
||
> Otherwise `M ≠ 0`. Because `M` is finite, the *Trichotomy Law for `ω`* implies
|
||
> the existence of a largest member `p ∈ M`. There are two cases to consider:
|
||
-/
|
||
by_cases h : ¬ ∃ t, t ∈ M ∧ f t = n
|
||
/-
|
||
> ##### Case 1
|
||
> `n ∉ ran f`.
|
||
> Then `f` is not onto `n⁺`.
|
||
-/
|
||
· have ⟨t, ht⟩ := hf_surj (show n ∈ _ by simp)
|
||
exact absurd ⟨t, ht⟩ h
|
||
/-
|
||
> ##### Case 2
|
||
> `n ∈ ran f`.
|
||
> Then there exists some `t ∈ M` such that `⟨t, n⟩ ∈ f`.
|
||
-/
|
||
have ⟨t, ht₁, ht₂⟩ := not_not.mp h
|
||
/-
|
||
> Define `f': M → n⁺` given by
|
||
>
|
||
> `f'(p) = f(t) = n`
|
||
> `f'(t) = f(p)`
|
||
> `f'(x) = f(x)` for all other `x`.
|
||
>
|
||
> That is, `f'` is a variant of `f` in which the largest element of its domain
|
||
> (i.e. `p`) corresponds to value `n`.
|
||
-/
|
||
-- `M ≠ ∅` so `∃ p, ∀ x ∈ M, p ≥ x`, i.e. a maximum member.
|
||
have ⟨p, hp₁, hp₂⟩ : ∃ p ∈ M, ∀ x, x ∈ M → p ≥ x := by
|
||
refine subset_finite_max_nat (show Set.Finite M from ?_) ?_ ?_
|
||
· show Set.Finite M
|
||
have := Set.finite_lt_nat (n + 1)
|
||
exact Set.Finite.subset this (subset_of_ssubset hM)
|
||
· show Set.Nonempty M
|
||
exact Set.nmem_singleton_empty.mp hM'
|
||
· show M ⊆ M
|
||
exact Eq.subset rfl
|
||
/-
|
||
> Next define `g = f' - {⟨p, n⟩}`. Then `g` is a function mapping `M - {p}` to
|
||
> `n`.
|
||
-/
|
||
let g := Set.Function.swap f p t
|
||
/-
|
||
> Since `f` is one-to-one, `f'` and `g` are also one-to-one.
|
||
-/
|
||
have hg_maps := Set.Function.swap_MapsTo_self hp₁ ht₁ hf_maps
|
||
have hg_inj := Set.Function.swap_InjOn_self hp₁ ht₁ hf_inj
|
||
/-
|
||
> Then *(1)* indicates `g` must not be onto `n`.
|
||
-/
|
||
let M' := M \ {p}
|
||
have hM' : M' ⊂ Set.Iio n := by
|
||
by_cases hc : p = n
|
||
· suffices Set.Iio (n + 1) \ {n} = Set.Iio n by
|
||
have h₁ := Set.diff_ssubset_diff_left hM hp₁
|
||
conv at h₁ => right; rw [hc]
|
||
rwa [← this]
|
||
ext x
|
||
apply Iff.intro
|
||
· intro hx₁
|
||
refine Or.elim (Nat.lt_or_eq_of_lt hx₁.left) (by simp) ?_
|
||
intro hx₂
|
||
rw [hx₂] at hx₁
|
||
simp at hx₁
|
||
· intro hx₁
|
||
exact ⟨Nat.lt_trans hx₁ (by simp), Nat.ne_of_lt hx₁⟩
|
||
|
||
have hp_lt_n : p < n := by
|
||
have := subset_of_ssubset hM
|
||
have hp' : p < n + 1 := this hp₁
|
||
exact Or.elim (Nat.lt_or_eq_of_lt hp') id (absurd · hc)
|
||
|
||
rw [Set.ssubset_def]
|
||
apply And.intro
|
||
· show ∀ x, x ∈ M' → x < n
|
||
intro x hx
|
||
simp only [Set.mem_diff, Set.mem_singleton_iff] at hx
|
||
calc x
|
||
_ ≤ p := hp₂ x hx.left
|
||
_ < n := hp_lt_n
|
||
· show ¬ ∀ x, x < n → x ∈ M'
|
||
by_contra np
|
||
have := np p hp_lt_n
|
||
simp at this
|
||
|
||
-- Consider `g = f' - {⟨p, n⟩}`. This restriction will allow us to use
|
||
-- the induction hypothesis to prove `g` isn't surjective.
|
||
have ng_surj : ¬ Set.SurjOn g M' (Set.Iio n) := by
|
||
refine ih _ hM' g ⟨?_, ?_⟩
|
||
· -- `Set.MapsTo g M' (Set.Iio n)`
|
||
intro x hx
|
||
have hx₁ : x ∈ M := Set.mem_of_mem_diff hx
|
||
apply Or.elim (Nat.lt_or_eq_of_lt $ hg_maps hx₁) id
|
||
intro hx₂
|
||
unfold Set.Function.swap at hx₂
|
||
by_cases hc₁ : x = p
|
||
· exact absurd hc₁ hx.right
|
||
· rw [if_neg hc₁] at hx₂
|
||
by_cases hc₂ : x = t
|
||
· rw [if_pos hc₂, ← ht₂] at hx₂
|
||
have := hf_inj hp₁ ht₁ hx₂
|
||
rw [← hc₂] at this
|
||
exact absurd this.symm hc₁
|
||
· rw [if_neg hc₂, ← ht₂] at hx₂
|
||
have := hf_inj hx₁ ht₁ hx₂
|
||
exact absurd this hc₂
|
||
· -- `Set.InjOn g M'`
|
||
intro x₁ hx₁ x₂ hx₂ hg
|
||
have hx₁' : x₁ ∈ M := (Set.diff_subset M {p}) hx₁
|
||
have hx₂' : x₂ ∈ M := (Set.diff_subset M {p}) hx₂
|
||
exact hg_inj hx₁' hx₂' hg
|
||
/-
|
||
> That is, there exists some `a ∈ n` such that `a ∉ ran g`.
|
||
-/
|
||
have ⟨a, ha₁, ha₂⟩ : ∃ a, a < n ∧ a ∉ g '' M' := by
|
||
unfold Set.SurjOn at ng_surj
|
||
rw [Set.subset_def] at ng_surj
|
||
simp only [
|
||
Set.mem_Iio,
|
||
Set.mem_image,
|
||
not_forall,
|
||
not_exists,
|
||
not_and,
|
||
exists_prop
|
||
] at ng_surj
|
||
unfold Set.image
|
||
simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and]
|
||
exact ng_surj
|
||
/-
|
||
> By the *Trichotomy Law for `ω`*, `a ≠ n`. Therefore `a ∉ ran f'`.
|
||
> `ran f' = ran f` meaning `a ∉ ran f`. Because `a ∈ n ∈ n⁺`, *Theorem 4F*
|
||
> implies `a ∈ n⁺`. Hence `f` is not onto `n⁺`.
|
||
-/
|
||
refine absurd (hf_surj $ calc a
|
||
_ < n := ha₁
|
||
_ < n + 1 := by simp) (show ↑a ∉ f '' M from ?_)
|
||
|
||
suffices g '' M = f '' M by
|
||
rw [← this]
|
||
show a ∉ g '' M
|
||
unfold Set.image at ha₂ ⊢
|
||
simp only [Set.mem_Iio, Set.mem_setOf_eq, not_exists, not_and] at ha₂ ⊢
|
||
intro x hx
|
||
by_cases hxp : x = p
|
||
· unfold Set.Function.swap
|
||
rw [if_pos hxp, ht₂]
|
||
exact (Nat.ne_of_lt ha₁).symm
|
||
· refine ha₂ x ?_
|
||
exact Set.mem_diff_of_mem hx hxp
|
||
|
||
ext x
|
||
dsimp only
|
||
unfold Set.Function.swap
|
||
simp only [Set.mem_image, Set.mem_Iio]
|
||
apply Iff.intro
|
||
· intro ⟨y, hy₁, hy₂⟩
|
||
by_cases hc₁ : y = p
|
||
· rw [if_pos hc₁, ht₂] at hy₂
|
||
rw [hy₂] at ht₂
|
||
exact ⟨t, ht₁, ht₂⟩
|
||
· rw [if_neg hc₁] at hy₂
|
||
by_cases hc₂ : y = t
|
||
· rw [if_pos hc₂] at hy₂
|
||
exact ⟨p, hp₁, hy₂⟩
|
||
· rw [if_neg hc₂] at hy₂
|
||
exact ⟨y, hy₁, hy₂⟩
|
||
· intro ⟨y, hy₁, hy₂⟩
|
||
by_cases hc₁ : y = p
|
||
· refine ⟨t, ht₁, ?_⟩
|
||
by_cases hc₂ : y = t
|
||
· rw [hc₂, ht₂] at hy₂
|
||
rw [← hc₁, ← hc₂]
|
||
simp only [ite_self, ite_true]
|
||
rwa [hc₂, ht₂]
|
||
· rw [hc₁, ← Ne.def] at hc₂
|
||
rwa [if_neg hc₂.symm, if_pos rfl, ← hc₁]
|
||
· by_cases hc₂ : y = t
|
||
· refine ⟨p, hp₁, ?_⟩
|
||
simp only [ite_self, ite_true]
|
||
rwa [hc₂] at hy₂
|
||
· refine ⟨y, hy₁, ?_⟩
|
||
rwa [if_neg hc₁, if_neg hc₂]
|
||
/-
|
||
> ##### Subconclusion
|
||
> The foregoing cases are exhaustive. Hence `n⁺ ∈ S`.
|
||
>
|
||
> #### (iii)
|
||
> By *(i)* and *(ii)*, `S` is an inductive set. By *Theorem 4B*, `S = ω`. Thus
|
||
> for all natural numbers `n`, there is no one-to-one correspondence between `n`
|
||
> and a proper subset of `n`. In other words, no natural number is equinumerous
|
||
> to a proper subset of itself.
|
||
-/
|
||
|
||
/--
|
||
No natural number is equinumerous to a proper subset of itself.
|
||
-/
|
||
theorem pigeonhole_principle {n : ℕ}
|
||
: ∀ {M}, M ⊂ Set.Iio n → M ≉ Set.Iio n := by
|
||
intro M hM nM
|
||
have ⟨f, hf⟩ := nM
|
||
have := pigeonhole_principle_aux n M hM f ⟨hf.left, hf.right.left⟩
|
||
exact absurd hf.right.right this
|
||
|
||
/-- ### Corollary 6C
|
||
|
||
No finite set is equinumerous to a proper subset of itself.
|
||
-/
|
||
theorem corollary_6c [DecidableEq α] [Nonempty α]
|
||
{S S' : Set α} (hS : Set.Finite S) (h : S' ⊂ S)
|
||
: S ≉ S' := by
|
||
/-
|
||
> Let `S` be a finite set and `S'` be a proper subset of `S`. Then there exists
|
||
> some set `T`, disjoint from `S'`, such that `S' ∪ T = S`. By definition of a
|
||
> finite set, `S` is equinumerous to a natural number `n`.
|
||
-/
|
||
let T := S \ S'
|
||
have hT : S = S' ∪ (S \ S') := by
|
||
simp only [Set.union_diff_self]
|
||
exact (Set.left_subset_union_eq_self (subset_of_ssubset h)).symm
|
||
/-
|
||
> By *Theorem 6A*, `S' ∪ T ≈ S` which, by the same theorem, implies
|
||
> `S' ∪ T ≈ n`.
|
||
-/
|
||
have hF := Set.equinumerous_refl S
|
||
conv at hF => arg 1; rw [hT]
|
||
have ⟨n, hG⟩ := Set.finite_iff_equinumerous_nat.mp hS
|
||
/-
|
||
> Let `f` be a one-to-one correspondence between `S' ∪ T` and `n`.
|
||
-/
|
||
have ⟨f, hf⟩ := Set.equinumerous_trans hF hG
|
||
/-
|
||
> Then `f ↾ S'` is a one-to-one correspondence between `S'` and a proper subset
|
||
> of `n`.
|
||
-/
|
||
let R := (Set.Iio n) \ (f '' T)
|
||
have hR : Set.BijOn f S' R := by
|
||
refine ⟨?_, ?_, ?_⟩
|
||
· -- `Set.MapsTo H S' R`
|
||
intro x hx
|
||
refine ⟨hf.left $ Set.mem_union_left T hx, ?_⟩
|
||
unfold Set.image
|
||
by_contra nx
|
||
simp only [Finset.mem_coe, Set.mem_setOf_eq] at nx
|
||
|
||
have ⟨a, ha₁, ha₂⟩ := nx
|
||
have hc₁ : a ∈ S' ∪ T := Set.mem_union_right S' ha₁
|
||
have hc₂ : x ∈ S' ∪ T := Set.mem_union_left T hx
|
||
rw [hf.right.left hc₁ hc₂ ha₂] at ha₁
|
||
|
||
have hx₁ : {x} ⊆ S' := Set.singleton_subset_iff.mpr hx
|
||
have hx₂ : {x} ⊆ T := Set.singleton_subset_iff.mpr ha₁
|
||
have hx₃ := Set.disjoint_sdiff_right hx₁ hx₂
|
||
simp only [
|
||
Set.bot_eq_empty,
|
||
Set.le_eq_subset,
|
||
Set.singleton_subset_iff,
|
||
Set.mem_empty_iff_false
|
||
] at hx₃
|
||
· -- `Set.InjOn H S'`
|
||
intro x₁ hx₁ x₂ hx₂ h
|
||
have hc₁ : x₁ ∈ S' ∪ T := Set.mem_union_left T hx₁
|
||
have hc₂ : x₂ ∈ S' ∪ T := Set.mem_union_left T hx₂
|
||
exact hf.right.left hc₁ hc₂ h
|
||
· -- `Set.SurjOn H S' R`
|
||
show ∀ r, r ∈ R → r ∈ f '' S'
|
||
intro r hr
|
||
unfold Set.image
|
||
simp only [Set.mem_setOf_eq]
|
||
dsimp only at hr
|
||
have := hf.right.right hr.left
|
||
simp only [Set.mem_image, Set.mem_union] at this
|
||
have ⟨x, hx⟩ := this
|
||
apply Or.elim hx.left
|
||
· intro hx'
|
||
exact ⟨x, hx', hx.right⟩
|
||
· intro hx'
|
||
refine absurd ?_ hr.right
|
||
rw [← hx.right]
|
||
simp only [Set.mem_image, Finset.mem_coe]
|
||
exact ⟨x, hx', rfl⟩
|
||
/-
|
||
> By the *Pigeonhole Principle*, `n` is not equinumerous to any proper subset of
|
||
> `n`. Therefore *Theorem 6A* implies `S'` cannot be equinumerous to `n`, which,
|
||
> by the same theorem, implies `S'` cannot be equinumerous to `S`. Hence no
|
||
> finite set is equinumerous to a proper subset of itself.
|
||
-/
|
||
intro hf'
|
||
have hf₁ : S ≈ R := Set.equinumerous_trans hf' ⟨f, hR⟩
|
||
have hf₂ : R ≈ Set.Iio n := by
|
||
have ⟨k, hk⟩ := Set.equinumerous_symm hf₁
|
||
exact Set.equinumerous_trans ⟨k, hk⟩ hG
|
||
|
||
refine absurd hf₂ (pigeonhole_principle ?_)
|
||
show R ⊂ Set.Iio n
|
||
apply And.intro
|
||
· show ∀ r, r ∈ R → r ∈ Set.Iio n
|
||
intro _ hr
|
||
exact hr.left
|
||
· show ¬ ∀ r, r ∈ Set.Iio n → r ∈ R
|
||
intro nr
|
||
have ⟨t, ht₁⟩ : Set.Nonempty T := Set.diff_ssubset_nonempty h
|
||
have ht₂ : f t ∈ Set.Iio n := hf.left (Set.mem_union_right S' ht₁)
|
||
have ht₃ : f t ∈ R := nr (f t) ht₂
|
||
exact absurd ⟨t, ht₁, rfl⟩ ht₃.right
|
||
|
||
/-- ### Corollary 6D (a)
|
||
|
||
Any set equinumerous to a proper subset of itself is infinite.
|
||
-/
|
||
theorem corollary_6d_a [DecidableEq α] [Nonempty α]
|
||
{S S' : Set α} (hS : S' ⊂ S) (hf : S ≈ S')
|
||
: Set.Infinite S := by
|
||
/-
|
||
> Let `S` be a set equinumerous to proper subset `S'` of itself. Then `S` cannot
|
||
> be a finite set by *Corollary 6C*. By definition, `S` is an infinite set.
|
||
-/
|
||
by_contra nS
|
||
simp only [Set.not_infinite] at nS
|
||
exact absurd hf (corollary_6c nS hS)
|
||
|
||
/-- ### Corollary 6D (b)
|
||
|
||
The set `ω` is infinite.
|
||
-/
|
||
theorem corollary_6d_b
|
||
: Set.Infinite (@Set.univ ℕ) := by
|
||
/-
|
||
> Consider set `S = {n ∈ ω | n is even}`. We prove that (i) `S` is equinumerous
|
||
> to `ω` and (ii) that `ω` is infinite.
|
||
-/
|
||
let S : Set ℕ := { 2 * n | n ∈ @Set.univ ℕ }
|
||
let f x := 2 * x
|
||
/-
|
||
> #### (i)
|
||
> Define `f : ω → S` given by `f(n) = 2 ⬝ n`. Notice `f` is well-defined by the
|
||
> definition of an even natural number, introduced in *Exercise 4.14*. We first
|
||
> show `f` is one-to-one and then that `f` is onto.
|
||
-/
|
||
have : Set.BijOn f (@Set.univ ℕ) S := by
|
||
refine ⟨by simp, ?_, ?_⟩
|
||
/-
|
||
> Suppose `f(n₁) = f(n₁) = 2 ⬝ n₁`. We must prove that `n₁ = n₂`.
|
||
-/
|
||
· -- `Set.InjOn f Set.univ`
|
||
intro n₁ _ n₂ _ hf
|
||
/-
|
||
> By the *Trichotomy Law for `ω`*, exactly one of the following may occur:
|
||
> `n₁ = n₂`, `n₁ < n₂`, or `n₂ < n₁`. If `n₁ < n₂`, then *Theorem 4N* implies
|
||
> `n₁ ⬝ 2 < n₂ ⬝ 2`. *Theorem 4K-5* then indicates `2 ⬝ n₁ < 2 ⬝ n₂`, a
|
||
> contradiction to `2 ⬝ n₁ = 2 ⬝ n₂`. A parallel argument holds for when
|
||
> `n₂ < n₁`. Thus `n₁ = n₂`.
|
||
-/
|
||
match @trichotomous ℕ LT.lt _ n₁ n₂ with
|
||
| Or.inr (Or.inl r) => exact r
|
||
| Or.inl r =>
|
||
have := (Chapter_4.theorem_4n_ii n₁ n₂ 1).mp r
|
||
conv at this => left; rw [mul_comm]
|
||
conv at this => right; rw [mul_comm]
|
||
exact absurd hf (Nat.ne_of_lt this)
|
||
| Or.inr (Or.inr r) =>
|
||
have := (Chapter_4.theorem_4n_ii n₂ n₁ 1).mp r
|
||
conv at this => left; rw [mul_comm]
|
||
conv at this => right; rw [mul_comm]
|
||
exact absurd hf.symm (Nat.ne_of_lt this)
|
||
/-
|
||
> Next, let `m ∈ S`. That is, `m` is an even number. By definition, there exists
|
||
> some `n ∈ ω` such that `m = 2 ⬝ n`. Thus `f(n) = m`.
|
||
-/
|
||
· -- `Set.SurjOn f Set.univ S`
|
||
show ∀ x, x ∈ S → x ∈ f '' Set.univ
|
||
intro x hx
|
||
unfold Set.image
|
||
simp only [Set.mem_univ, true_and, Set.mem_setOf_eq] at hx ⊢
|
||
exact hx
|
||
/-
|
||
> By *(i)*, `ω` is equinumerous to a subset of itself. By *Corollary 6D (a)*,
|
||
> `ω` is infinite.
|
||
-/
|
||
refine corollary_6d_a ?_ ⟨f, this⟩
|
||
rw [Set.ssubset_def]
|
||
apply And.intro
|
||
· simp
|
||
· show ¬ ∀ x, x ∈ Set.univ → x ∈ S
|
||
simp only [
|
||
Set.mem_univ,
|
||
true_and,
|
||
Set.mem_setOf_eq,
|
||
forall_true_left,
|
||
not_forall,
|
||
not_exists
|
||
]
|
||
refine ⟨1, ?_⟩
|
||
intro x nx
|
||
simp only [mul_eq_one, OfNat.ofNat_ne_one, false_and] at nx
|
||
|
||
/-- ### Corollary 6E
|
||
|
||
Any finite set is equinumerous to a unique natural number.
|
||
-/
|
||
theorem corollary_6e [Nonempty α] (S : Set α) (hS : Set.Finite S)
|
||
: ∃! n : ℕ, S ≈ Set.Iio n := by
|
||
/-
|
||
> Let `S` be a finite set. By definition `S` is equinumerous to a natural number
|
||
> `n`.
|
||
-/
|
||
have ⟨n, hf⟩ := Set.finite_iff_equinumerous_nat.mp hS
|
||
refine ⟨n, hf, ?_⟩
|
||
/-
|
||
> Suppose `S` is equinumerous to another natural number `m`.
|
||
-/
|
||
intro m hg
|
||
/-
|
||
> By the *Trichotomy Law for `ω`*, exactly one of three situations is possible:
|
||
> `n = m`, `n < m`, or `m < n`.
|
||
-/
|
||
match @trichotomous ℕ LT.lt _ m n with
|
||
/-
|
||
> If `n < m`, then `m ≈ S` and `S ≈ n`. By *Theorem 6A*, it follows `m ≈ n`. But
|
||
> the *Pigeonhole Principle* indicates no natural number is equinumerous to a
|
||
> proper subset of itself, a contradiction.
|
||
-/
|
||
| Or.inr (Or.inr r) =>
|
||
have hh := Set.equinumerous_symm hf
|
||
have hk := Set.equinumerous_trans hh hg
|
||
have hnm : Set.Iio n ⊂ Set.Iio m := Set.Iio_nat_lt_ssubset r
|
||
exact absurd hk (pigeonhole_principle hnm)
|
||
/-
|
||
> If `m < n`, a parallel argument applies.
|
||
-/
|
||
| Or.inl r =>
|
||
have hh := Set.equinumerous_symm hg
|
||
have hk := Set.equinumerous_trans hh hf
|
||
have hmn : Set.Iio m ⊂ Set.Iio n := Set.Iio_nat_lt_ssubset r
|
||
exact absurd hk (pigeonhole_principle hmn)
|
||
/-
|
||
> Hence `n = m`, proving every finite set is equinumerous to a unique natural
|
||
> number.
|
||
-/
|
||
| Or.inr (Or.inl r) => exact r
|
||
|
||
|
||
/-- ### Lemma 6F
|
||
|
||
If `C` is a proper subset of a natural number `n`, then `C ≈ m` for some `m`
|
||
less than `n`.
|
||
-/
|
||
lemma lemma_6f {n : ℕ}
|
||
: ∀ {C}, C ⊂ Set.Iio n → ∃ m, m < n ∧ C ≈ Set.Iio m := by
|
||
/-
|
||
> Let
|
||
>
|
||
> `S = {n ∈ ω | ∀C ⊂ n, ∃m < n such that C ≈ m}`. (2)
|
||
>
|
||
> We prove that (i) `0 ∈ S` and (ii) if `n ∈ S` then `n⁺ ∈ S`. Afterward we
|
||
> prove (iii) the lemma statement.
|
||
-/
|
||
induction n with
|
||
/-
|
||
> #### (i)
|
||
> By definition, `0 = ∅`. Thus `0` has no proper subsets. Hence `0 ∈ S`
|
||
> vacuously.
|
||
-/
|
||
| zero =>
|
||
intro C hC
|
||
unfold Set.Iio at hC
|
||
simp only [Nat.zero_eq, not_lt_zero', Set.setOf_false] at hC
|
||
rw [Set.ssubset_empty_iff_false] at hC
|
||
exact False.elim hC
|
||
/-
|
||
> #### (ii)
|
||
> Suppose `n ∈ S` and consider `n⁺`. By definition of the successor,
|
||
> `n⁺ = n ∪ {n}`. There are two cases to consider:
|
||
-/
|
||
| succ n ih =>
|
||
/-
|
||
> Let `C` be an arbitrary, proper subset of `n⁺`.
|
||
-/
|
||
intro C hC
|
||
|
||
-- A useful theorem we use in a couple of places.
|
||
have h_subset_equinumerous
|
||
: ∀ S, S ⊆ Set.Iio n →
|
||
∃ m, m < n + 1 ∧ S ≈ Set.Iio m := by
|
||
intro S hS
|
||
rw [subset_iff_ssubset_or_eq] at hS
|
||
apply Or.elim hS
|
||
· -- `S ⊂ Set.Iio n`
|
||
intro h
|
||
have ⟨m, hm⟩ := ih h
|
||
exact ⟨m, calc m
|
||
_ < n := hm.left
|
||
_ < n + 1 := by simp, hm.right⟩
|
||
· -- `S = Set.Iio n`
|
||
intro h
|
||
exact ⟨n, by simp, Set.eq_imp_equinumerous h⟩
|
||
/-
|
||
> There are two cases to consider:
|
||
-/
|
||
by_cases hn : n ∉ C
|
||
/-
|
||
> ##### Case 1
|
||
> Suppose `n ∉ C`. Then `C ⊆ n`. If `C` is a proper subset of `n`, *(2)* implies
|
||
> `C` is equinumerous to some `m < n < n⁺`. If `C = n`, then *Theorem 6A*
|
||
> implies `C` is equinumerous to `n < n⁺`.
|
||
-/
|
||
· refine h_subset_equinumerous C ?_
|
||
show ∀ x, x ∈ C → x ∈ Set.Iio n
|
||
intro x hx
|
||
apply Or.elim (Nat.lt_or_eq_of_lt (subset_of_ssubset hC hx))
|
||
· exact id
|
||
· intro hx₁
|
||
rw [hx₁] at hx
|
||
exact absurd hx hn
|
||
/-
|
||
> ##### Case 2
|
||
> Suppose `n ∈ C`. Since `C` is a proper subset of `n⁺`, the set `n⁺ - C` is
|
||
> nonempty. By the *Well Ordering of `ω`*, `n⁺ - C` has a least element, say
|
||
> `p` (which does not equal `n`).
|
||
-/
|
||
simp only [not_not] at hn
|
||
have hC₁ : Set.Nonempty (Set.Iio (n + 1) \ C) := by
|
||
rw [Set.ssubset_def] at hC
|
||
have : ¬ ∀ x, x ∈ Set.Iio (n + 1) → x ∈ C := hC.right
|
||
simp only [Set.mem_Iio, not_forall, exists_prop] at this
|
||
exact this
|
||
-- `p` is the least element of `n⁺ - C`.
|
||
have ⟨p, hp⟩ := Chapter_4.well_ordering_nat hC₁
|
||
/-
|
||
> Consider now set `C' = (C - {n}) ∪ {p}`. By construction, `C' ⊆ n`.
|
||
-/
|
||
let C' := (C \ {n}) ∪ {p}
|
||
have hC'₁ : C' ⊆ Set.Iio n := by
|
||
show ∀ x, x ∈ C' → x ∈ Set.Iio n
|
||
intro x hx
|
||
match @trichotomous ℕ LT.lt _ x n with
|
||
| Or.inl r => exact r
|
||
| Or.inr (Or.inl r) =>
|
||
rw [r] at hx
|
||
apply Or.elim hx
|
||
· intro nx
|
||
simp at nx
|
||
· intro nx
|
||
simp only [Set.mem_singleton_iff] at nx
|
||
rw [nx] at hn
|
||
exact absurd hn hp.left.right
|
||
| Or.inr (Or.inr r) =>
|
||
apply Or.elim hx
|
||
· intro ⟨h₁, h₂⟩
|
||
have h₃ := subset_of_ssubset hC h₁
|
||
simp only [Set.mem_singleton_iff, Set.mem_Iio] at h₂ h₃
|
||
exact Or.elim (Nat.lt_or_eq_of_lt h₃) id (absurd · h₂)
|
||
· intro h
|
||
simp only [Set.mem_singleton_iff] at h
|
||
have := hp.left.left
|
||
rw [← h] at this
|
||
exact Or.elim (Nat.lt_or_eq_of_lt this)
|
||
id (absurd · (Nat.ne_of_lt r).symm)
|
||
/-
|
||
> As seen in *Case 1*, `C'` is equinumerous to some `m < n⁺`.
|
||
-/
|
||
have ⟨m, hm₁, hm₂⟩ := h_subset_equinumerous C' hC'₁
|
||
/-
|
||
> It suffices to show there exists a one-to-one correspondence between `C'` and
|
||
> `C`, since then *Theorem 6A* implies `C` is equinumerous to `m` as well.
|
||
-/
|
||
suffices C' ≈ C from
|
||
⟨m, hm₁, Set.equinumerous_trans (Set.equinumerous_symm this) hm₂⟩
|
||
/-
|
||
> Function `f : C' → C` given by
|
||
>
|
||
> `f(x) = if x = p then n else x`
|
||
>
|
||
> is trivially one-to-one and onto as expected.
|
||
-/
|
||
let f x := if x = p then n else x
|
||
refine ⟨f, ?_, ?_, ?_⟩
|
||
· -- `Set.MapsTo f C' C`
|
||
intro x hx
|
||
dsimp only
|
||
by_cases hxp : x = p
|
||
· rw [if_pos hxp]
|
||
exact hn
|
||
· rw [if_neg hxp]
|
||
apply Or.elim hx
|
||
· exact fun x => x.left
|
||
· intro hx₁
|
||
simp only [Set.mem_singleton_iff] at hx₁
|
||
exact absurd hx₁ hxp
|
||
· -- `Set.InjOn f C'`
|
||
intro x₁ hx₁ x₂ hx₂ hf
|
||
dsimp only at hf
|
||
by_cases hx₁p : x₁ = p
|
||
· by_cases hx₂p : x₂ = p
|
||
· rw [hx₁p, hx₂p]
|
||
· rw [if_pos hx₁p, if_neg hx₂p] at hf
|
||
apply Or.elim hx₂
|
||
· intro nx
|
||
exact absurd hf.symm nx.right
|
||
· intro nx
|
||
simp only [Set.mem_singleton_iff] at nx
|
||
exact absurd nx hx₂p
|
||
· by_cases hx₂p : x₂ = p
|
||
· rw [if_neg hx₁p, if_pos hx₂p] at hf
|
||
apply Or.elim hx₁
|
||
· intro nx
|
||
exact absurd hf nx.right
|
||
· intro nx
|
||
simp only [Set.mem_singleton_iff] at nx
|
||
exact absurd nx hx₁p
|
||
· rwa [if_neg hx₁p, if_neg hx₂p] at hf
|
||
· -- `Set.SurjOn f C' C`
|
||
show ∀ x, x ∈ C → x ∈ f '' C'
|
||
intro x hx
|
||
simp only [
|
||
Set.union_singleton,
|
||
Set.mem_diff,
|
||
Set.mem_singleton_iff,
|
||
Set.mem_image,
|
||
Set.mem_insert_iff,
|
||
exists_eq_or_imp,
|
||
ite_true
|
||
]
|
||
by_cases nx₁ : x = n
|
||
· left
|
||
exact nx₁.symm
|
||
· right
|
||
by_cases nx₂ : x = p
|
||
· have := hp.left.right
|
||
rw [← nx₂] at this
|
||
exact absurd hx this
|
||
· exact ⟨x, ⟨hx, nx₁⟩, by rwa [if_neg]⟩
|
||
/-
|
||
> #### (iii)
|
||
> By *(i)* and *(ii)*, `S` is an inductive set. By *Theorem 4B*, `S = ω`.
|
||
> Therefore, for every proper subset `C` of a natural number `n`, there exists
|
||
> some `m < n` such that `C ≈ n`.
|
||
-/
|
||
|
||
/-- ### Corollary 6G
|
||
|
||
Any subset of a finite set is finite.
|
||
-/
|
||
theorem corollary_6g {S S' : Set α} (hS : Set.Finite S) (hS' : S' ⊆ S)
|
||
: Set.Finite S' := by
|
||
/-
|
||
> Let `S` be a finite set and `S' ⊆ S`.
|
||
-/
|
||
rw [subset_iff_ssubset_or_eq, or_comm] at hS'
|
||
apply Or.elim hS'
|
||
/-
|
||
> Clearly, if `S' = S`, then `S'` is finite.
|
||
-/
|
||
· intro h
|
||
rwa [h]
|
||
/-
|
||
> Therefore suppose `S'` is a proper subset of `S`.
|
||
-/
|
||
intro h
|
||
/-
|
||
> By definition of a finite set, `S` is equinumerous to some natural number `n`.
|
||
> Let `f` be a one-to-one correspondence between `S` and `n`.
|
||
-/
|
||
rw [Set.finite_iff_equinumerous_nat] at hS
|
||
have ⟨n, f, hf⟩ := hS
|
||
/-
|
||
> Then `f ↾ S'` is a one-to-one correspondence between `S'` and some proper
|
||
> subset of `n`.
|
||
-/
|
||
-- Mirrors logic found in `corollary_6c`.
|
||
let T := S \ S'
|
||
let R := (Set.Iio n) \ (f '' T)
|
||
have hR : R ⊂ Set.Iio n := by
|
||
rw [Set.ssubset_def]
|
||
apply And.intro
|
||
· show ∀ x, x ∈ R → x ∈ Set.Iio n
|
||
intro _ hx
|
||
exact hx.left
|
||
· show ¬ ∀ x, x ∈ Set.Iio n → x ∈ R
|
||
intro nr
|
||
have ⟨t, ht₁⟩ : Set.Nonempty T := Set.diff_ssubset_nonempty h
|
||
have ht₂ : f t ∈ Set.Iio n := hf.left ht₁.left
|
||
have ht₃ : f t ∈ R := nr (f t) ht₂
|
||
exact absurd ⟨t, ht₁, rfl⟩ ht₃.right
|
||
|
||
have : Set.BijOn f S' R := by
|
||
refine ⟨?_, ?_, ?_⟩
|
||
· -- `Set.MapsTo f S' R`
|
||
intro x hx
|
||
dsimp only
|
||
simp only [Set.mem_diff, Set.mem_Iio, Set.mem_image, not_exists, not_and]
|
||
apply And.intro
|
||
· exact hf.left (subset_of_ssubset h hx)
|
||
· intro y hy
|
||
by_contra nf
|
||
have := hf.right.left (subset_of_ssubset h hx) hy.left nf.symm
|
||
rw [this] at hx
|
||
exact absurd hx hy.right
|
||
· -- `Set.InjOn f S'`
|
||
intro x₁ hx₁ x₂ hx₂ hf'
|
||
have h₁ : x₁ ∈ S := subset_of_ssubset h hx₁
|
||
have h₂ : x₂ ∈ S := subset_of_ssubset h hx₂
|
||
exact hf.right.left h₁ h₂ hf'
|
||
· -- `Set.SurjOn f S' R`
|
||
show ∀ x, x ∈ R → x ∈ f '' S'
|
||
intro x hx
|
||
|
||
have h₁ := hf.right.right
|
||
unfold Set.SurjOn at h₁
|
||
rw [Set.subset_def] at h₁
|
||
have ⟨y, hy⟩ := h₁ x hx.left
|
||
|
||
refine ⟨y, ?_, hy.right⟩
|
||
rw [← hy.right] at hx
|
||
simp only [Set.mem_image, Set.mem_diff, not_exists, not_and] at hx
|
||
by_contra ny
|
||
exact (hx.right y ⟨hy.left, ny⟩) rfl
|
||
/-
|
||
> By *Lemma 6f*, `ran (f ↾ S')` is equinumerous to some `m < n`.
|
||
-/
|
||
have ⟨m, hm⟩ := lemma_6f hR
|
||
/-
|
||
> Then *Theorem 6A* indicates `S' ≈ m`. Hence `S'` is a finite set.
|
||
-/
|
||
have := Set.equinumerous_trans ⟨f, this⟩ hm.right
|
||
exact Set.finite_iff_equinumerous_nat.mpr ⟨m, this⟩
|
||
|
||
|
||
/-- ### Subset Size
|
||
|
||
Let `A` be a finite set and `B ⊂ A`. Then there exist natural numbers `m, n ∈ ω`
|
||
such that `B ≈ m`, `A ≈ n`, and `m ≤ n`.
|
||
-/
|
||
lemma subset_size [DecidableEq α] [Nonempty α] {A B : Set α}
|
||
(hBA : B ⊆ A) (hA : Set.Finite A)
|
||
: ∃ m n : ℕ, B ≈ Set.Iio m ∧ A ≈ Set.Iio n ∧ m ≤ n := by
|
||
/-
|
||
> Let `A` be a finite set and `B` be a subset of `A`. By *Corollary 6G*, `B`
|
||
> must be finite. By definition of a finite set, there exists natural numbers
|
||
> `m, n ∈ ω` such that `B ≈ m` and `A ≈ n`.
|
||
-/
|
||
have ⟨n, hn⟩ := Set.finite_iff_equinumerous_nat.mp hA
|
||
have ⟨m, hm⟩ := Set.finite_iff_equinumerous_nat.mp (corollary_6g hA hBA)
|
||
refine ⟨m, n, hm, hn, ?_⟩
|
||
/-
|
||
> By the *Trichotomy Law for `ω`*, it suffices to prove that `m > n` is not
|
||
> possible for then either `m < n` or `m = n`.
|
||
-/
|
||
suffices ¬ m > n by
|
||
match @trichotomous ℕ LT.lt _ m n with
|
||
| Or.inr (Or.inl hr) => -- m = n
|
||
rw [hr]
|
||
| Or.inr (Or.inr hr) => -- m > n
|
||
exact absurd hr this
|
||
| Or.inl hr => -- m < n
|
||
exact Nat.le_of_lt hr
|
||
/-
|
||
> For the sake of contradiction, assume `m > n`. By definition of equinumerous,
|
||
> there exists a one-to-one correspondence between `B` and `m`. *Theorem 6A*
|
||
> indicates there then exists a one-to-one correspondence `f` between `m` and
|
||
> `B`. Likewise, there exists a one-to-one correspondence `g` between `A` and
|
||
> `n`.
|
||
-/
|
||
by_contra nr
|
||
have ⟨f, hf⟩ := Set.equinumerous_symm hm
|
||
have ⟨g, hg⟩ := hn
|
||
/-
|
||
> Define `h : A → B` as `h(x) = f(g(x))` for all `x ∈ A`. Since `n ⊂ m` by
|
||
> *Corollary 4M*, `h` is well-defined. By *One-to-One Composition*, `h` must be
|
||
> one-to-one. thus `h` is a one-to-one correspondence between `A` and `ran h`,
|
||
> i.e. `A ≈ ran h`.
|
||
-/
|
||
let h x := f (g x)
|
||
have hh : Set.BijOn h A (h '' A) := by
|
||
refine ⟨?_, ?_, Eq.subset rfl⟩
|
||
· -- `Set.MapsTo h A (ran h)`
|
||
intro x hx
|
||
simp only [Set.mem_image]
|
||
exact ⟨x, hx, rfl⟩
|
||
· -- `Set.InjOn h A`
|
||
refine Set.InjOn.comp hf.right.left hg.right.left ?_
|
||
intro x hx
|
||
exact Nat.lt_trans (hg.left hx) nr
|
||
/-
|
||
> But `n < m` meaning `ran h ⊂ B` which in turn is a proper subset of `A` by
|
||
> hypothesis. *Corollary 6C* states no finite set is equinumerous to a proper
|
||
> subset of itself, a contradiction.
|
||
-/
|
||
have : h '' A ⊂ A := by
|
||
rw [Set.ssubset_def]
|
||
apply And.intro
|
||
· show ∀ x, x ∈ h '' A → x ∈ A
|
||
intro x hx
|
||
have ⟨y, hy₁, hy₂⟩ := hx
|
||
have h₁ : g y ∈ Set.Iio n := hg.left hy₁
|
||
have h₂ : f (g y) ∈ B := hf.left (Nat.lt_trans h₁ nr)
|
||
have h₃ : x ∈ B := by rwa [← hy₂]
|
||
exact hBA h₃
|
||
· rw [Set.subset_def]
|
||
simp only [Set.mem_image, not_forall, not_exists, not_and, exists_prop]
|
||
refine ⟨f n, hBA (hf.left nr), ?_⟩
|
||
intro x hx
|
||
by_contra nh
|
||
have h₁ : g x < n := hg.left hx
|
||
have h₂ : g x ∈ Set.Iio m := Nat.lt_trans h₁ nr
|
||
rw [hf.right.left h₂ nr nh] at h₁
|
||
simp at h₁
|
||
exact absurd ⟨h, hh⟩ (corollary_6c hA this)
|
||
|
||
/-- ### Finite Domain and Range Size
|
||
|
||
Let `A` and `B` be finite sets and `f : A → B` be a function. Then there exist
|
||
natural numbers `m, n ∈ ω` such that `dom f ≈ m`, `ran f ≈ n`, and `m ≥ n`.
|
||
-/
|
||
theorem finite_dom_ran_size [Nonempty α] {A B : Set α}
|
||
(hA : Set.Finite A) (hB : Set.Finite B) (hf : Set.MapsTo f A B)
|
||
: ∃ m n : ℕ, A ≈ Set.Iio m ∧ f '' A ≈ Set.Iio n ∧ m ≥ n := by
|
||
have ⟨m, hm⟩ := Set.finite_iff_equinumerous_nat.mp hA
|
||
have ⟨p, hp⟩ := Set.finite_iff_equinumerous_nat.mp hB
|
||
have ⟨g, hg⟩ := Set.equinumerous_symm hm
|
||
|
||
let A_y y := { x ∈ Set.Iio m | f (g x) = y }
|
||
have hA₁ : ∀ y ∈ B, A_y y ≈ f ⁻¹' {y} := by
|
||
sorry
|
||
have hA₂ : ∀ y ∈ B, Set.Nonempty (A_y y) := by
|
||
sorry
|
||
have hA₃ : ∀ y ∈ B, ∃ q : ℕ, ∀ p ∈ A_y y, q ≤ p := by
|
||
sorry
|
||
|
||
let C := { q | ∃ y ∈ B, ∀ p ∈ A_y y, q ≤ p }
|
||
let h x := f (g x)
|
||
have hh : C ≈ f '' A := by
|
||
sorry
|
||
|
||
sorry
|
||
|
||
/-- ### Set Difference Size
|
||
|
||
Let `A ≈ m` for some natural number `m` and `B ⊆ A`. Then there exists some
|
||
`n ∈ ω` such that `B ≈ n` and `A - B ≈ m - n`.
|
||
-/
|
||
lemma sdiff_size_aux [DecidableEq α] [Nonempty α]
|
||
: ∀ A : Set α, A ≈ Set.Iio m →
|
||
∀ B, B ⊆ A →
|
||
∃ n : ℕ, n ≤ m ∧ B ≈ Set.Iio n ∧ A \ B ≈ (Set.Iio m) \ (Set.Iio n) := by
|
||
/-
|
||
> `Let
|
||
>
|
||
> `S = {m ∈ ω | ∀ A ≈ m, ∀ B ⊆ A, ∃ n ∈ ω(n ≤ m ∧ B ≈ n ∧ A - B ≈ m - n) }`.
|
||
>
|
||
> We prove that (i) `0 ∈ S` and (ii) if `n ∈ S` then `n⁺ ∈ S`. Afterward we
|
||
> prove (iii) the lemma statement.
|
||
-/
|
||
induction m with
|
||
| zero =>
|
||
/-
|
||
> #### (i)
|
||
> Let `A ≈ 0` and `B ⊆ A`. Then it follows `A = B = ∅ = 0`. Since `0 ≤ 0`,
|
||
> `B ≈ 0`, and `A - B = ∅ ≈ 0 = 0 - 0`, it follows `0 ∈ S`.
|
||
-/
|
||
intro A hA B hB
|
||
refine ⟨0, ?_⟩
|
||
simp only [
|
||
Nat.zero_eq,
|
||
sdiff_self,
|
||
Set.bot_eq_empty,
|
||
Set.equinumerous_zero_iff_emptyset
|
||
] at hA ⊢
|
||
have hB' : B = ∅ := Set.subset_eq_empty hB hA
|
||
have : A \ B = ∅ := by
|
||
rw [hB']
|
||
simp only [Set.diff_empty]
|
||
exact hA
|
||
rw [this]
|
||
refine ⟨by simp, hB', Set.equinumerous_emptyset_emptyset⟩
|
||
| succ m ih =>
|
||
/-
|
||
> #### (ii)
|
||
> Suppose `m ∈ S` and consider `m⁺`. Let `A ≈ m⁺` and let `B ⊆ A`. By definition
|
||
> of equinumerous, there exists a one-to-one corerspondnece `f` between `A` and
|
||
> `m⁺`.
|
||
-/
|
||
intro A ⟨f, hf⟩ B hB
|
||
/-
|
||
> Since `f` is one-to-one and onto, there exists a unique value `a ∈ A` such
|
||
> that `f(a) = m`.
|
||
-/
|
||
have hfa := hf.right.right
|
||
unfold Set.SurjOn at hfa
|
||
have ⟨a, ha₁, ha₂⟩ := (Set.subset_def ▸ hfa) m (by simp)
|
||
/-
|
||
> Then `B - {a} ⊆A - {a}` and `f` is a one-to-one correspondence between
|
||
> `A - {a}` and `m`.
|
||
-/
|
||
have hBA : B \ {a} ⊆ A \ {a} := Set.diff_subset_diff_left hB
|
||
have hfBA : Set.BijOn f (A \ {a}) (Set.Iio m) := by
|
||
refine ⟨?_, ?_, ?_⟩
|
||
· intro x hx
|
||
have := hf.left hx.left
|
||
simp only [Set.mem_Iio, gt_iff_lt] at this ⊢
|
||
apply Or.elim (Nat.lt_or_eq_of_lt this)
|
||
· simp
|
||
· intro h
|
||
rw [← ha₂] at h
|
||
exact absurd (hf.right.left hx.left ha₁ h) hx.right
|
||
· intro x₁ hx₁ x₂ hx₂ h
|
||
exact hf.right.left hx₁.left hx₂.left h
|
||
· have := hf.right.right
|
||
unfold Set.SurjOn Set.image at this ⊢
|
||
rw [Set.subset_def] at this ⊢
|
||
simp only [
|
||
Set.mem_Iio,
|
||
Set.mem_diff,
|
||
Set.mem_singleton_iff,
|
||
Set.mem_setOf_eq
|
||
] at this ⊢
|
||
intro x hx
|
||
have ⟨b, hb⟩ := this x (Nat.lt.step hx)
|
||
refine ⟨b, ⟨hb.left, ?_⟩, hb.right⟩
|
||
by_contra nb
|
||
rw [← nb, hb.right] at ha₂
|
||
exact absurd ha₂ (Nat.ne_of_lt hx)
|
||
/-
|
||
> By *(IH)*, there exists some `n ∈ ω` such that `n ≤ m`, `B - {a} ≈ n` and
|
||
>
|
||
> `(A - {a}) - (B - {a}) ≈ m - n`. (6.4)
|
||
>
|
||
> There are two cases to consider:
|
||
-/
|
||
-- `(A - {a}) - (B - {a}) ≈ m - n`
|
||
have ⟨n, hn₁, hn₂, hn₃⟩ := ih (A \ {a}) ⟨f, hfBA⟩ (B \ {a}) hBA
|
||
by_cases hc : a ∈ B
|
||
· refine ⟨n.succ, ?_, ?_, ?_⟩
|
||
/-
|
||
> ##### Case 1
|
||
> Assume `a ∈ B`. Then `B ≈ n⁺`.
|
||
-/
|
||
· exact Nat.succ_le_succ hn₁
|
||
· -- `B ≈ Set.Iio n.succ`
|
||
have ⟨g, hg⟩ := hn₂
|
||
let g' x := if x = a then n else g x
|
||
refine ⟨g', ⟨?_, ?_, ?_⟩⟩
|
||
· -- `Set.MapsTo g' B (Set.Iio n.succ)`
|
||
intro x hx
|
||
dsimp only
|
||
by_cases hx' : x = a
|
||
· rw [if_pos hx']
|
||
simp
|
||
· rw [if_neg hx']
|
||
calc g x
|
||
_ < n := hg.left ⟨hx, hx'⟩
|
||
_ < n + 1 := by simp
|
||
· -- `Set.InjOn g' B`
|
||
intro x₁ hx₁ x₂ hx₂ h
|
||
dsimp only at h
|
||
by_cases hc₁ : x₁ = a <;> by_cases hc₂ : x₂ = a
|
||
· rw [hc₁, hc₂]
|
||
· rw [if_pos hc₁, if_neg hc₂] at h
|
||
exact absurd h.symm (Nat.ne_of_lt $ hg.left ⟨hx₂, hc₂⟩)
|
||
· rw [if_neg hc₁, if_pos hc₂] at h
|
||
exact absurd h (Nat.ne_of_lt $ hg.left ⟨hx₁, hc₁⟩)
|
||
· rw [if_neg hc₁, if_neg hc₂] at h
|
||
exact hg.right.left ⟨hx₁, hc₁⟩ ⟨hx₂, hc₂⟩ h
|
||
· -- `Set.SurjOn g' B (Set.Iio n.succ)`
|
||
have := hg.right.right
|
||
unfold Set.SurjOn Set.image at this ⊢
|
||
rw [Set.subset_def] at this ⊢
|
||
simp only [Set.mem_Iio, Set.mem_setOf_eq] at this ⊢
|
||
intro x hx
|
||
by_cases hc₁ : x = n
|
||
· refine ⟨a, hc, ?_⟩
|
||
simp only [ite_true]
|
||
exact hc₁.symm
|
||
· apply Or.elim (Nat.lt_or_eq_of_lt hx)
|
||
· intro hx₁
|
||
have ⟨b, ⟨hb₁, hb₂⟩, hb₃⟩ := this x hx₁
|
||
refine ⟨b, hb₁, ?_⟩
|
||
simp only [Set.mem_singleton_iff] at hb₂
|
||
rwa [if_neg hb₂]
|
||
· intro hx₁
|
||
exact absurd hx₁ hc₁
|
||
/-
|
||
> Furthermore, by definition of the set difference,
|
||
>
|
||
> `...`
|
||
-/
|
||
· have hA₁ : (A \ {a}) \ (B \ {a}) = (A \ B) \ {a} :=
|
||
Set.diff_mem_diff_mem_eq_diff_diff_mem
|
||
/-
|
||
> Since `a ∈ A` and `a ∈ B`, `(A - B) - {a} = A - B`.
|
||
-/
|
||
have hA₂ : (A \ B) \ {a} = A \ B := by
|
||
refine Set.not_mem_diff_eq_self ?_
|
||
by_contra na
|
||
exact absurd hc na.right
|
||
/-
|
||
> Thus
|
||
>
|
||
> `(A - {a} - (B - {a})) = (A - B) - {a}`
|
||
> ` = A - B`
|
||
> ` ≈ m - n` *(6.4)*
|
||
> ` ≈ m⁺ - n⁺`
|
||
-/
|
||
rw [hA₁, hA₂] at hn₃
|
||
exact Set.equinumerous_trans hn₃
|
||
(Set.equinumerous_symm Set.succ_diff_succ_equinumerous_diff)
|
||
/-
|
||
> ##### Case 2
|
||
> Assume `a ∉ B`. Then `B - {a} = B` (i.e. `B ≈ n`) and
|
||
>
|
||
> `(A - {a}) - (B - {a}) = (A - {a}) - B`
|
||
> ` ≈ m - n`. *(6.4)
|
||
-/
|
||
· have hB : B \ {a} = B := Set.not_mem_diff_eq_self hc
|
||
refine ⟨n, ?_, ?_, ?_⟩
|
||
· calc n
|
||
_ ≤ m := hn₁
|
||
_ ≤ m + 1 := by simp
|
||
· rwa [← hB]
|
||
/-
|
||
> The above implies that there exists a one-to-one correspondence `g` between
|
||
> `(A - {a}) - B` and `m - n`. Therefore `g ∪ {⟨a, m⟩}` is a one-to-one
|
||
> correspondence between `A - B` and `(m - n) ∪ {m}`.
|
||
-/
|
||
· rw [hB] at hn₃
|
||
have ⟨g, hg⟩ := hn₃
|
||
have hAB : A \ B ≈ (Set.Iio m) \ (Set.Iio n) ∪ {m} := by
|
||
refine ⟨fun x => if x = a then m else g x, ?_, ?_, ?_⟩
|
||
· intro x hx
|
||
dsimp only
|
||
by_cases hc₁ : x = a
|
||
· rw [if_pos hc₁]
|
||
simp
|
||
· rw [if_neg hc₁]
|
||
have := hg.left ⟨⟨hx.left, hc₁⟩, hx.right⟩
|
||
simp only [
|
||
Set.Iio_diff_Iio,
|
||
gt_iff_lt,
|
||
not_lt,
|
||
ge_iff_le,
|
||
Set.union_singleton,
|
||
Set.mem_Ico,
|
||
lt_self_iff_false,
|
||
and_false,
|
||
Set.mem_insert_iff
|
||
] at this ⊢
|
||
right
|
||
exact this
|
||
· intro x₁ hx₁ x₂ hx₂ h
|
||
dsimp only at h
|
||
by_cases hc₁ : x₁ = a <;> by_cases hc₂ : x₂ = a
|
||
· rw [hc₁, hc₂]
|
||
· rw [if_pos hc₁, if_neg hc₂] at h
|
||
have := hg.left ⟨⟨hx₂.left, hc₂⟩, hx₂.right⟩
|
||
simp at this
|
||
exact absurd h.symm (Nat.ne_of_lt this.right)
|
||
· rw [if_neg hc₁, if_pos hc₂] at h
|
||
have := hg.left ⟨⟨hx₁.left, hc₁⟩, hx₁.right⟩
|
||
simp only [Set.Iio_diff_Iio, gt_iff_lt, not_lt, ge_iff_le, Set.mem_Ico] at this
|
||
exact absurd h (Nat.ne_of_lt this.right)
|
||
· rw [if_neg hc₁, if_neg hc₂] at h
|
||
exact hg.right.left ⟨⟨hx₁.left, hc₁⟩, hx₁.right⟩ ⟨⟨hx₂.left, hc₂⟩, hx₂.right⟩ h
|
||
· have := hg.right.right
|
||
unfold Set.SurjOn Set.image at this ⊢
|
||
rw [Set.subset_def] at this ⊢
|
||
simp at this ⊢
|
||
refine ⟨⟨a, ⟨ha₁, hc⟩, ?_⟩, ?_⟩
|
||
· intro ha
|
||
simp at ha
|
||
· intro x hx₁ hx₂
|
||
have ⟨y, hy₁, hy₂⟩ := this x hx₁ hx₂
|
||
refine ⟨y, ?_, ?_⟩
|
||
· exact ⟨hy₁.left.left, hy₁.right⟩
|
||
· rwa [if_neg hy₁.left.right]
|
||
/-
|
||
> Hence
|
||
>
|
||
> `A - B ≈ (m - n) ∪ {m} ≈ m⁺ - n`.
|
||
-/
|
||
exact Set.equinumerous_trans hAB (Set.diff_union_equinumerous_succ_diff hn₁)
|
||
/-
|
||
> ##### Subconclusion
|
||
> The above two cases are exhaustive and both conclude the existence of some
|
||
> `n ∈ ω` such that `n ≤ m⁺`, `B ≈ n`, and `A - B ≈ m⁺ - n`. Hence `m⁺ ∈ S`.
|
||
>
|
||
> #### (iii)
|
||
> By *(i)* and *(ii)*, `S ⊆ ω` is an inductive set. Thus *Theorem 4B* implies
|
||
> `S = ω`. Hence, for all `A ≈ m` for some `m ∈ ω`, if `B ⊆ A`, then there
|
||
> exists some `n ∈ ω` such that `n ≤ m`, `B ≈ n`, and `A - B ≈ m - n`.
|
||
-/
|
||
|
||
lemma sdiff_size [DecidableEq α] [Nonempty α] {A B : Set α}
|
||
(hB : B ⊆ A) (hA : A ≈ Set.Iio m)
|
||
: ∃ n : ℕ, n ≤ m ∧ B ≈ Set.Iio n ∧ A \ B ≈ (Set.Iio m) \ (Set.Iio n) :=
|
||
sdiff_size_aux A hA B hB
|
||
|
||
/-- ### Exercise 6.7
|
||
|
||
Assume that `A` is finite and `f : A → A`. Show that `f` is one-to-one **iff**
|
||
`ran f = A`.
|
||
-/
|
||
theorem exercise_6_7 [DecidableEq α] [Nonempty α] {A : Set α} {f : α → α}
|
||
(hA₁ : Set.Finite A) (hA₂ : Set.MapsTo f A A)
|
||
: Set.InjOn f A ↔ f '' A = A := by
|
||
apply Iff.intro
|
||
· intro hf
|
||
have hf₂ : A ≈ f '' A := by
|
||
refine ⟨f, ?_, hf, ?_⟩
|
||
· -- `Set.MapsTo f A (f '' A)`
|
||
intro x hx
|
||
simp only [Set.mem_image]
|
||
exact ⟨x, hx, rfl⟩
|
||
· -- `Set.SurjOn f A (f '' A)`
|
||
intro _ hx
|
||
exact hx
|
||
have hf₃ : f '' A ⊆ A := by
|
||
show ∀ x, x ∈ f '' A → x ∈ A
|
||
intro x ⟨a, ha₁, ha₂⟩
|
||
rw [← ha₂]
|
||
exact hA₂ ha₁
|
||
rw [subset_iff_ssubset_or_eq] at hf₃
|
||
exact Or.elim hf₃ (fun h => absurd hf₂ (corollary_6c hA₁ h)) id
|
||
· intro hf₁
|
||
by_cases hA₃ : A = ∅
|
||
· rw [hA₃]
|
||
simp
|
||
· intro x₁ hx₁ x₂ hx₂ hf₂
|
||
let y := f x₁
|
||
let B := f ⁻¹' {y}
|
||
have hB₁ : x₁ ∈ B := sorry
|
||
have hB₂ : x₂ ∈ B := sorry
|
||
have hB₃ : B ⊆ A := sorry
|
||
have ⟨m₁, n₁, hm₁, hn₁, hmn₁⟩ := subset_size hB₃ hA₁
|
||
|
||
have hf'₁ : Set.MapsTo f (A \ B) (A \ {y}) := sorry
|
||
have hf'₂ : f '' (A \ B) = A \ {y} := sorry
|
||
have hf'₃ : Set.Finite (A \ B) := sorry
|
||
have hf'₄ : Set.Finite (A \ {y}) := sorry
|
||
|
||
have ⟨m₂, n₂, hm₂, hn₂, hmn₂⟩ := finite_dom_ran_size hf'₃ hf'₄ hf'₁
|
||
|
||
have h₁ : A \ B ≈ Set.Iio (n₁ - m₁) := sorry
|
||
have h₂ : A \ {y} ≈ Set.Iio (n₁ - 1) := sorry
|
||
sorry
|
||
|
||
/-- ### Exercise 6.8
|
||
|
||
Prove that the union of two finites sets is finite, without any use of
|
||
arithmetic.
|
||
-/
|
||
theorem exercise_6_8 {A B : Set α} (hA : Set.Finite A) (hB : Set.Finite B)
|
||
: Set.Finite (A ∪ B) := by
|
||
sorry
|
||
|
||
/-- ### Exercise 6.9
|
||
|
||
Prove that the Cartesian product of two finites sets is finite, without any use
|
||
of arithmetic.
|
||
-/
|
||
theorem exercise_6_9 {A : Set α} {B : Set β}
|
||
(hA : Set.Finite A) (hB : Set.Finite B)
|
||
: Set.Finite (Set.prod A B) := by
|
||
sorry
|
||
|
||
end Enderton.Set.Chapter_6
|