278 lines
7.8 KiB
Plaintext
278 lines
7.8 KiB
Plaintext
/-
|
||
Chapter 0
|
||
|
||
Useful Facts About Sets
|
||
-/
|
||
|
||
import Common.Tuple
|
||
|
||
/--
|
||
The following describes a so-called "generic" tuple. Like in `Common.Tuple`, an
|
||
`n`-tuple is defined recursively like so:
|
||
|
||
`⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩`
|
||
|
||
Unlike `Common.Tuple`, a "generic" tuple bends the syntax above further. For
|
||
example, both tuples above are equivalent to:
|
||
|
||
`⟨⟨x₁, ..., xₘ⟩, xₘ₊₁, ..., xₙ⟩`
|
||
|
||
for some `1 ≤ m ≤ n`. This distinction is purely syntactic, but necessary to
|
||
prove certain theorems found in [1] (e.g. `lemma_0a`).
|
||
|
||
In general, prefer `Common.Tuple`.
|
||
-/
|
||
inductive XTuple : (α : Type u) → (size : Nat × Nat) → Type u where
|
||
| nil : XTuple α (0, 0)
|
||
| snoc : XTuple α (p, q) → Tuple α r → XTuple α (p + q, r)
|
||
|
||
syntax (priority := high) "x[" term,* "]" : term
|
||
|
||
macro_rules
|
||
| `(x[]) => `(XTuple.nil)
|
||
| `(x[$x]) => `(XTuple.snoc x[] t[$x])
|
||
| `(x[x[$xs:term,*], $ys:term,*]) => `(XTuple.snoc x[$xs,*] t[$ys,*])
|
||
| `(x[$x, $xs:term,*]) => `(XTuple.snoc x[] t[$x, $xs,*])
|
||
|
||
namespace XTuple
|
||
|
||
open scoped Tuple
|
||
|
||
-- ========================================
|
||
-- Normalization
|
||
-- ========================================
|
||
|
||
/--
|
||
Converts an `XTuple` into "normal form".
|
||
-/
|
||
def norm : XTuple α (m, n) → Tuple α (m + n)
|
||
| x[] => t[]
|
||
| snoc is ts => Tuple.concat is.norm ts
|
||
|
||
/--
|
||
Normalization of an empty `XTuple` yields an empty `Tuple`.
|
||
-/
|
||
theorem norm_nil_eq_nil : @norm α 0 0 nil = Tuple.nil :=
|
||
rfl
|
||
|
||
/--
|
||
Normalization of a pseudo-empty `XTuple` yields an empty `Tuple`.
|
||
-/
|
||
theorem norm_snoc_nil_nil_eq_nil : @norm α 0 0 (snoc x[] t[]) = t[] := by
|
||
unfold norm norm
|
||
rfl
|
||
|
||
/--
|
||
Normalization elimates `snoc` when the `snd` component is `nil`.
|
||
-/
|
||
theorem norm_snoc_nil_elim {t : XTuple α (p, q)}
|
||
: norm (snoc t t[]) = norm t := by
|
||
cases t with
|
||
| nil => simp; unfold norm norm; rfl
|
||
| snoc tf tl =>
|
||
simp
|
||
conv => lhs; unfold norm
|
||
|
||
/--
|
||
Normalization eliminates `snoc` when the `fst` component is `nil`.
|
||
-/
|
||
theorem norm_nil_snoc_elim {ts : Tuple α n}
|
||
: norm (snoc x[] ts) = cast (by simp) ts := by
|
||
unfold norm norm
|
||
rw [Tuple.nil_concat_self_eq_self]
|
||
|
||
/--
|
||
Normalization distributes across `Tuple.snoc` calls.
|
||
-/
|
||
theorem norm_snoc_snoc_norm
|
||
: norm (snoc as (Tuple.snoc bs b)) = Tuple.snoc (norm (snoc as bs)) b := by
|
||
unfold norm
|
||
rw [←Tuple.concat_snoc_snoc_concat]
|
||
|
||
/--
|
||
Normalizing an `XTuple` is equivalent to concatenating the normalized `fst`
|
||
component with the `snd`.
|
||
-/
|
||
theorem norm_snoc_eq_concat {t₁ : XTuple α (p, q)} {t₂ : Tuple α n}
|
||
: norm (snoc t₁ t₂) = Tuple.concat t₁.norm t₂ := by
|
||
conv => lhs; unfold norm
|
||
|
||
-- ========================================
|
||
-- Equality
|
||
-- ========================================
|
||
|
||
/--
|
||
Implements Boolean equality for `XTuple α n` provided `α` has decidable
|
||
equality.
|
||
-/
|
||
instance BEq [DecidableEq α] : BEq (XTuple α n) where
|
||
beq t₁ t₂ := t₁.norm == t₂.norm
|
||
|
||
-- ========================================
|
||
-- Basic API
|
||
-- ========================================
|
||
|
||
/--
|
||
Returns the number of entries in the `XTuple`.
|
||
-/
|
||
def size (_ : XTuple α n) := n
|
||
|
||
/--
|
||
Returns the number of entries in the "shallowest" portion of the `XTuple`. For
|
||
example, the length of `x[x[1, 2], 3, 4]` is `3`, despite its size being `4`.
|
||
-/
|
||
def length : XTuple α n → Nat
|
||
| x[] => 0
|
||
| snoc x[] ts => ts.size
|
||
| snoc _ ts => 1 + ts.size
|
||
|
||
/--
|
||
Returns the first component of our `XTuple`. For example, the first component of
|
||
tuple `x[x[1, 2], 3, 4]` is `t[1, 2]`.
|
||
-/
|
||
def fst : XTuple α (m, n) → Tuple α m
|
||
| x[] => t[]
|
||
| snoc ts _ => ts.norm
|
||
|
||
/--
|
||
Given `XTuple α (m, n)`, the `fst` component is equal to an initial segment of
|
||
size `k` of the tuple in normal form.
|
||
-/
|
||
theorem self_fst_eq_norm_take (t : XTuple α (m, n)) : t.fst = t.norm.take m :=
|
||
match t with
|
||
| x[] => by unfold fst; rw [Tuple.self_take_zero_eq_nil]; simp
|
||
| snoc tf tl => by
|
||
unfold fst
|
||
conv => rhs; unfold norm
|
||
rw [Tuple.eq_take_concat]
|
||
simp
|
||
|
||
/--
|
||
If the normal form of an `XTuple` is equal to a `Tuple`, the `fst` component
|
||
must be a prefix of the `Tuple`.
|
||
-/
|
||
theorem norm_eq_fst_eq_take {t₁ : XTuple α (m, n)} {t₂ : Tuple α (m + n)}
|
||
: (t₁.norm = t₂) → (t₁.fst = t₂.take m) :=
|
||
fun h => by rw [self_fst_eq_norm_take, h]
|
||
|
||
/--
|
||
Returns the first component of our `XTuple`. For example, the first component of
|
||
tuple `x[x[1, 2], 3, 4]` is `t[3, 4]`.
|
||
-/
|
||
def snd : XTuple α (m, n) → Tuple α n
|
||
| x[] => t[]
|
||
| snoc _ ts => ts
|
||
|
||
-- ========================================
|
||
-- Lemma 0A
|
||
-- ========================================
|
||
|
||
section
|
||
|
||
variable {k m n : Nat}
|
||
variable (p : 1 ≤ m)
|
||
variable (q : n + (m - 1) = m + k)
|
||
|
||
namespace Lemma_0a
|
||
|
||
lemma n_eq_succ_k : n = k + 1 :=
|
||
let ⟨m', h⟩ := Nat.exists_eq_succ_of_ne_zero $ show m ≠ 0 by
|
||
intro h
|
||
have ff : 1 ≤ 0 := h ▸ p
|
||
ring_nf at ff
|
||
exact ff.elim
|
||
calc
|
||
n = n + (m - 1) - (m - 1) := by rw [Nat.add_sub_cancel]
|
||
_ = m' + 1 + k - (m' + 1 - 1) := by rw [q, h]
|
||
_ = m' + 1 + k - m' := by simp
|
||
_ = 1 + k + m' - m' := by rw [Nat.add_assoc, Nat.add_comm]
|
||
_ = 1 + k := by simp
|
||
_ = k + 1 := by rw [Nat.add_comm]
|
||
|
||
lemma n_pred_eq_k : n - 1 = k := by
|
||
have h : k + 1 - 1 = k + 1 - 1 := rfl
|
||
conv at h => lhs; rw [←n_eq_succ_k p q]
|
||
simp at h
|
||
exact h
|
||
|
||
lemma n_geq_one : 1 ≤ n := by
|
||
rw [n_eq_succ_k p q]
|
||
simp
|
||
|
||
lemma min_comm_succ_eq : min (m + k) (k + 1) = k + 1 :=
|
||
Nat.recOn k
|
||
(by simp; exact p)
|
||
(fun k' ih => calc
|
||
min (m + (k' + 1)) (k' + 1 + 1)
|
||
= min (m + k' + 1) (k' + 1 + 1) := by conv => rw [Nat.add_assoc]
|
||
_ = min (m + k') (k' + 1) + 1 := Nat.min_succ_succ (m + k') (k' + 1)
|
||
_ = k' + 1 + 1 := by rw [ih])
|
||
|
||
lemma n_eq_min_comm_succ : n = min (m + k) (k + 1) := by
|
||
rw [min_comm_succ_eq p]
|
||
exact n_eq_succ_k p q
|
||
|
||
lemma n_pred_m_eq_m_k : n + (m - 1) = m + k := by
|
||
rw [←Nat.add_sub_assoc p, Nat.add_comm, Nat.add_sub_assoc (n_geq_one p q)]
|
||
conv => lhs; rw [n_pred_eq_k p q]
|
||
|
||
def cast_norm : XTuple α (n, m - 1) → Tuple α (m + k)
|
||
| xs => cast (by rw [q]) xs.norm
|
||
|
||
def cast_fst : XTuple α (n, m - 1) → Tuple α (k + 1)
|
||
| xs => cast (by rw [n_eq_succ_k p q]) xs.fst
|
||
|
||
def cast_take (ys : Tuple α (m + k)) :=
|
||
cast (by rw [min_comm_succ_eq p]) (ys.take (k + 1))
|
||
|
||
end Lemma_0a
|
||
|
||
open Lemma_0a
|
||
|
||
/--[1]
|
||
Assume that ⟨x₁, ..., xₘ⟩ = ⟨y₁, ..., yₘ, ..., yₘ₊ₖ⟩. Then x₁ = ⟨y₁, ..., yₖ₊₁⟩.
|
||
-/
|
||
theorem lemma_0a (xs : XTuple α (n, m - 1)) (ys : Tuple α (m + k))
|
||
: (cast_norm q xs = ys) → (cast_fst p q xs = cast_take p ys) := by
|
||
intro h
|
||
suffices HEq
|
||
(cast (_ : Tuple α n = Tuple α (k + 1)) (fst xs))
|
||
(cast (_ : Tuple α (min (m + k) (k + 1)) = Tuple α (k + 1)) (Tuple.take ys (k + 1)))
|
||
from eq_of_heq this
|
||
congr
|
||
· exact n_eq_min_comm_succ p q
|
||
· rfl
|
||
· exact n_eq_min_comm_succ p q
|
||
· exact HEq.rfl
|
||
· exact Eq.recOn
|
||
(motive := fun _ h => HEq
|
||
(_ : n + (n - 1) = n + k)
|
||
(cast h (show n + (n - 1) = n + k by rw [n_pred_eq_k p q])))
|
||
(show (n + (n - 1) = n + k) = (min (m + k) (k + 1) + (n - 1) = n + k) by
|
||
rw [n_eq_min_comm_succ p q])
|
||
HEq.rfl
|
||
· exact n_geq_one p q
|
||
· exact n_pred_eq_k p q
|
||
· exact Eq.symm (n_eq_min_comm_succ p q)
|
||
· exact n_pred_eq_k p q
|
||
· rw [self_fst_eq_norm_take]
|
||
unfold cast_norm at h
|
||
simp at h
|
||
rw [←h, ←n_eq_succ_k p q]
|
||
have h₂ := Eq.recOn
|
||
(motive := fun x h => HEq
|
||
(Tuple.take xs.norm n)
|
||
(Tuple.take (cast (show Tuple α (n + (m - 1)) = Tuple α x by rw [h]) xs.norm) n))
|
||
(show n + (m - 1) = m + k by rw [n_pred_m_eq_m_k p q])
|
||
HEq.rfl
|
||
exact Eq.recOn
|
||
(motive := fun x h => HEq
|
||
(cast h (Tuple.take xs.norm n))
|
||
(Tuple.take (cast (_ : Tuple α (n + (m - 1)) = Tuple α (m + k)) xs.norm) n))
|
||
(show Tuple α (min (n + (m - 1)) n) = Tuple α n by simp)
|
||
h₂
|
||
|
||
end
|
||
|
||
end XTuple
|