117 lines
2.7 KiB
TeX
117 lines
2.7 KiB
TeX
\documentclass{article}
|
|
\usepackage[shortlabels]{enumitem}
|
|
|
|
\input{preamble}
|
|
|
|
\newcommand{\ns}{Exercises.Apostol.Chapter\_I\_3.Real}
|
|
\newcommand{\link}[1]{\href{../Chapter_I_3.html\#\ns.#1}{\ns.#1}}
|
|
|
|
\begin{document}
|
|
|
|
\section*{Theorem I.27}%
|
|
\label{sec:theorem-i.27}
|
|
|
|
Every nonempty set $S$ that is bounded below has a greatest lower bound; that
|
|
is, there is a real number $L$ such that $L = \inf{S}$.
|
|
|
|
\begin{proof}
|
|
|
|
\link{exists\_isGLB}
|
|
|
|
\end{proof}
|
|
|
|
\section*{Theorem I.29}%
|
|
\label{sec:theorem-i.29}
|
|
|
|
For every real $x$ there exists a positive integer $n$ such that $n > x$.
|
|
|
|
\begin{proof}
|
|
|
|
\link{exists\_pnat\_geq\_self}
|
|
|
|
\end{proof}
|
|
|
|
\section*{Theorem I.30 (Archimedean Property of the Reals)}%
|
|
\label{sec:theorem-i.30}
|
|
|
|
If $x > 0$ and if $y$ is an arbitrary real number, there exists a positive
|
|
integer $n$ such that $nx > y$.
|
|
|
|
\begin{proof}
|
|
|
|
\link{exists\_pnat\_mul\_self\_geq\_of\_pos}
|
|
|
|
\end{proof}
|
|
|
|
\section*{Theorem I.31}%
|
|
\label{sec:theorem-i.31}
|
|
|
|
If three real numbers $a$, $x$, and $y$ satisfy the inequalities
|
|
$$a \leq x \leq a + \frac{y}{n}$$
|
|
for every integer $n \geq 1$, then $x = a$.
|
|
|
|
\begin{proof}
|
|
|
|
\link{forall\_pnat\_leq\_self\_leq\_frac\_imp\_eq}
|
|
|
|
\end{proof}
|
|
|
|
\section*{Theorem I.32}%
|
|
\label{sec:theorem-i.32}
|
|
|
|
Let $h$ be a given positive number and let $S$ be a set of real numbers.
|
|
\begin{enumerate}[(a)]
|
|
\item If $S$ has a supremum, then for some $x$ in $S$ we have
|
|
$$x > \sup{S} - h.$$
|
|
\item If $S$ has an infimum, then for some $x$ in $S$ we have
|
|
$$x < \inf{S} + h.$$
|
|
\end{enumerate}
|
|
|
|
\begin{proof}
|
|
|
|
\begin{enumerate}[(a)]
|
|
\item \link{sup\_imp\_exists\_gt\_sup\_sub\_delta}
|
|
\item \link{inf\_imp\_exists\_lt\_inf\_add\_delta}
|
|
\end{enumerate}
|
|
|
|
\end{proof}
|
|
|
|
\section*{Theorem I.33 (Additive Property)}%
|
|
\label{sec:theorem-i.33}
|
|
|
|
Given nonempty subsets $A$ and $B$ of $\mathbb{R}$, let $C$ denote the set
|
|
$$C = \{a + b : a \in A, b \in B\}.$$
|
|
|
|
\begin{enumerate}[(a)]
|
|
\item If each of $A$ and $B$ has a supremum, then $C$ has a supremum, and
|
|
$$\sup{C} = \sup{A} + \sup{B}.$$
|
|
\item If each of $A$ and $B$ has an infimum, then $C$ has an infimum, and
|
|
$$\inf{C} = \inf{A} + \inf{B}.$$
|
|
\end{enumerate}
|
|
|
|
\begin{proof}
|
|
|
|
\begin{enumerate}[(a)]
|
|
\item \link{sup\_minkowski\_sum\_eq\_sup\_add\_sup}
|
|
\item \link{inf\_minkowski\_sum\_eq\_inf\_add\_inf}
|
|
\end{enumerate}
|
|
|
|
\end{proof}
|
|
|
|
\section*{Theorem I.34}%
|
|
\label{sec:theorem-i.34}
|
|
|
|
Given two nonempty subsets $S$ and $T$ of $\mathbb{R}$ such that
|
|
$$s \leq t$$
|
|
for every $s$ in $S$ and every $t$ in $T$. Then $S$ has a supremum, and $T$
|
|
has an infimum, and they satisfy the inequality
|
|
$$\sup{S} \leq \inf{T}.$$
|
|
|
|
\begin{proof}
|
|
|
|
\link{forall\_mem\_le\_forall\_mem\_imp\_sup\_le\_inf}
|
|
|
|
\end{proof}
|
|
|
|
\end{document}
|