349 lines
11 KiB
Plaintext
349 lines
11 KiB
Plaintext
import Mathlib.Data.Set.Basic
|
||
|
||
import Bookshelf.Enderton.Set.Chapter_2
|
||
import Common.Logic.Basic
|
||
import Common.Set.Basic
|
||
|
||
/-! # Enderton.Chapter_3
|
||
|
||
Relations and Functions
|
||
-/
|
||
|
||
namespace Enderton.Set.Chapter_3
|
||
|
||
/-! ## Ordered Pairs -/
|
||
|
||
/--
|
||
Kazimierz Kuratowski's definition of an ordered pair.
|
||
-/
|
||
def OrderedPair (x : α) (y : β) : Set (Set (α ⊕ β)) :=
|
||
{{Sum.inl x}, {Sum.inl x, Sum.inr y}}
|
||
|
||
namespace OrderedPair
|
||
|
||
/--
|
||
For any sets `x`, `y`, `u`, and `v`, `⟨u, v⟩ = ⟨x, y⟩` **iff** `u = x ∧ v = y`.
|
||
-/
|
||
theorem ext_iff {x u : α} {y v : β}
|
||
: (OrderedPair x y = OrderedPair u v) ↔ (x = u ∧ y = v) := by
|
||
unfold OrderedPair
|
||
apply Iff.intro
|
||
· intro h
|
||
have hu := Set.ext_iff.mp h {Sum.inl u}
|
||
have huv := Set.ext_iff.mp h {Sum.inl u, Sum.inr v}
|
||
simp only [
|
||
Set.mem_singleton_iff,
|
||
Set.mem_insert_iff,
|
||
true_or,
|
||
iff_true
|
||
] at hu
|
||
simp only [
|
||
Set.mem_singleton_iff,
|
||
Set.mem_insert_iff,
|
||
or_true,
|
||
iff_true
|
||
] at huv
|
||
apply Or.elim hu
|
||
· apply Or.elim huv
|
||
· -- #### Case 1
|
||
-- `{u} = {x}` and `{u, v} = {x}`.
|
||
intro huv_x hu_x
|
||
rw [Set.singleton_eq_singleton_iff] at hu_x
|
||
rw [hu_x] at huv_x
|
||
have hx_v := Set.pair_eq_singleton_mem_imp_eq_self huv_x
|
||
rw [hu_x, hx_v] at h
|
||
simp only [Set.mem_singleton_iff, Set.insert_eq_of_mem] at h
|
||
have := Set.pair_eq_singleton_mem_imp_eq_self $
|
||
Set.pair_eq_singleton_mem_imp_eq_self h
|
||
rw [← hx_v] at this
|
||
injection hu_x with p
|
||
injection this with q
|
||
exact ⟨p.symm, q⟩
|
||
· -- #### Case 2
|
||
-- `{u} = {x}` and `{u, v} = {x, y}`.
|
||
intro huv_xy hu_x
|
||
rw [Set.singleton_eq_singleton_iff] at hu_x
|
||
rw [hu_x] at huv_xy
|
||
by_cases hx_v : Sum.inl x = Sum.inr v
|
||
· rw [hx_v] at huv_xy
|
||
simp at huv_xy
|
||
have := Set.pair_eq_singleton_mem_imp_eq_self huv_xy.symm
|
||
injection hu_x with p
|
||
injection this with q
|
||
exact ⟨p.symm, q⟩
|
||
· rw [Set.ext_iff] at huv_xy
|
||
have := huv_xy (Sum.inr v)
|
||
simp at this
|
||
injection hu_x with p
|
||
exact ⟨p.symm, this.symm⟩
|
||
· apply Or.elim huv
|
||
· -- #### Case 3
|
||
-- `{u} = {x, y}` and `{u, v} = {x}`.
|
||
intro huv_x _
|
||
rw [Set.ext_iff] at huv_x
|
||
have hv_x := huv_x (Sum.inr v)
|
||
simp only [
|
||
Set.mem_singleton_iff,
|
||
Set.mem_insert_iff,
|
||
or_true,
|
||
true_iff
|
||
] at hv_x
|
||
· -- #### Case 4
|
||
-- `{u} = {x, y}` and `{u, v} = {x, y}`.
|
||
intro _ hu_xy
|
||
rw [Set.ext_iff] at hu_xy
|
||
have hy_u := hu_xy (Sum.inr y)
|
||
simp only [
|
||
Set.mem_singleton_iff,
|
||
Set.mem_insert_iff,
|
||
or_true,
|
||
iff_true
|
||
] at hy_u
|
||
· intro h
|
||
rw [h.left, h.right]
|
||
|
||
end OrderedPair
|
||
|
||
/-- ### Theorem 3B
|
||
|
||
If `x ∈ C` and `y ∈ C`, then `⟨x, y⟩ ∈ 𝒫 𝒫 C`.
|
||
-/
|
||
theorem theorem_3b {C : Set (α ⊕ α)} (hx : Sum.inl x ∈ C) (hy : Sum.inr y ∈ C)
|
||
: OrderedPair x y ∈ 𝒫 𝒫 C := by
|
||
have hxs : {Sum.inl x} ⊆ C := Set.singleton_subset_iff.mpr hx
|
||
have hxys : {Sum.inl x, Sum.inr y} ⊆ C := Set.mem_mem_imp_pair_subset hx hy
|
||
exact Set.mem_mem_imp_pair_subset hxs hxys
|
||
|
||
/-- ### Exercise 5.1
|
||
|
||
Suppose that we attempted to generalize the Kuratowski definitions of ordered
|
||
pairs to ordered triples by defining
|
||
```
|
||
⟨x, y, z⟩* = {{x}, {x, y}, {x, y, z}}.open Set
|
||
|
||
```
|
||
Show that this definition is unsuccessful by giving examples of objects `u`,
|
||
`v`, `w`, `x`, `y`, `z` with `⟨x, y, z⟩* = ⟨u, v, w⟩*` but with either `y ≠ v`
|
||
or `z ≠ w` (or both).
|
||
-/
|
||
theorem exercise_5_1 {x y z u v w : ℕ}
|
||
(hx : x = 1) (hy : y = 1) (hz : z = 2)
|
||
(hu : u = 1) (hv : v = 2) (hw : w = 2)
|
||
: ({{x}, {x, y}, {x, y, z}} : Set (Set ℕ)) = {{u}, {u, v}, {u, v, w}}
|
||
∧ y ≠ v := by
|
||
apply And.intro
|
||
· rw [hx, hy, hz, hu, hv, hw]
|
||
simp
|
||
· rw [hy, hv]
|
||
simp only
|
||
|
||
/-- ### Exercise 5.2a
|
||
|
||
Show that `A × (B ∪ C) = (A × B) ∪ (A × C)`.
|
||
-/
|
||
theorem exercise_5_2a {A : Set α} {B C : Set β}
|
||
: Set.prod A (B ∪ C) = (Set.prod A B) ∪ (Set.prod A C) := by
|
||
calc Set.prod A (B ∪ C)
|
||
_ = { p | p.1 ∈ A ∧ p.2 ∈ B ∪ C } := rfl
|
||
_ = { p | p.1 ∈ A ∧ (p.2 ∈ B ∨ p.2 ∈ C) } := rfl
|
||
_ = { p | (p.1 ∈ A ∧ p.2 ∈ B) ∨ (p.1 ∈ A ∧ p.2 ∈ C) } := by
|
||
ext x
|
||
rw [Set.mem_setOf_eq]
|
||
conv => lhs; rw [and_or_left]
|
||
_ = { p | p ∈ Set.prod A B ∨ (p ∈ Set.prod A C) } := rfl
|
||
_ = (Set.prod A B) ∪ (Set.prod A C) := rfl
|
||
|
||
/-- ### Exercise 5.2b
|
||
|
||
Show that if `A × B = A × C` and `A ≠ ∅`, then `B = C`.
|
||
-/
|
||
theorem exercise_5_2b {A : Set α} {B C : Set β}
|
||
(h : Set.prod A B = Set.prod A C) (hA : Set.Nonempty A)
|
||
: B = C := by
|
||
by_cases hB : Set.Nonempty B
|
||
· suffices B ⊆ C ∧ C ⊆ B from Set.Subset.antisymm_iff.mpr this
|
||
have ⟨a, ha⟩ := hA
|
||
apply And.intro
|
||
· show ∀ t, t ∈ B → t ∈ C
|
||
intro t ht
|
||
have : (a, t) ∈ Set.prod A B := ⟨ha, ht⟩
|
||
rw [h] at this
|
||
exact this.right
|
||
· show ∀ t, t ∈ C → t ∈ B
|
||
intro t ht
|
||
have : (a, t) ∈ Set.prod A C := ⟨ha, ht⟩
|
||
rw [← h] at this
|
||
exact this.right
|
||
· have nB : B = ∅ := Set.not_nonempty_iff_eq_empty.mp hB
|
||
rw [nB, Set.prod_right_emptyset_eq_emptyset, Set.ext_iff] at h
|
||
rw [nB]
|
||
by_contra nC
|
||
have ⟨a, ha⟩ := hA
|
||
have ⟨c, hc⟩ := Set.nonempty_iff_ne_empty.mpr (Ne.symm nC)
|
||
exact (h (a, c)).mpr ⟨ha, hc⟩
|
||
|
||
/-- ### Exercise 5.3
|
||
|
||
Show that `A × ⋃ 𝓑 = ⋃ {A × X | X ∈ 𝓑}`.
|
||
-/
|
||
theorem exercise_5_3 {A : Set (Set α)} {𝓑 : Set (Set β)}
|
||
: Set.prod A (⋃₀ 𝓑) = ⋃₀ {Set.prod A X | X ∈ 𝓑} := by
|
||
calc Set.prod A (⋃₀ 𝓑)
|
||
_ = { p | p.1 ∈ A ∧ p.2 ∈ ⋃₀ 𝓑} := rfl
|
||
_ = { p | p.1 ∈ A ∧ ∃ b ∈ 𝓑, p.2 ∈ b } := rfl
|
||
_ = { p | ∃ b ∈ 𝓑, p.1 ∈ A ∧ p.2 ∈ b } := by
|
||
ext x
|
||
rw [Set.mem_setOf_eq]
|
||
apply Iff.intro
|
||
· intro ⟨h₁, ⟨b, h₂⟩⟩
|
||
exact ⟨b, ⟨h₂.left, ⟨h₁, h₂.right⟩⟩⟩
|
||
· intro ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||
exact ⟨h₂, ⟨b, ⟨h₁, h₃⟩⟩⟩
|
||
_ = ⋃₀ { Set.prod A p | p ∈ 𝓑 } := by
|
||
ext x
|
||
rw [Set.mem_setOf_eq]
|
||
unfold Set.sUnion sSup Set.instSupSetSet
|
||
simp only [Set.mem_setOf_eq, exists_exists_and_eq_and]
|
||
apply Iff.intro
|
||
· intro ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||
exact ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||
· intro ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||
exact ⟨b, ⟨h₁, ⟨h₂, h₃⟩⟩⟩
|
||
|
||
/-- ### Exercise 5.5a
|
||
|
||
Assume that `A` and `B` are given sets, and show that there exists a set `C`
|
||
such that for any `y`,
|
||
```
|
||
y ∈ C ↔ y = {x} × B for some x in A.
|
||
```
|
||
In other words, show that `{{x} × B | x ∈ A}` is a set.
|
||
-/
|
||
theorem exercise_5_5a {A : Set α} {B : Set β}
|
||
: ∃ C : Set (Set (α × β)),
|
||
y ∈ C ↔ ∃ x ∈ A, y = Set.prod {x} B := by
|
||
let C := {y ∈ 𝒫 (Set.prod A B) | ∃ a ∈ A, ∀ x, (x ∈ y ↔ ∃ b ∈ B, x = (a, b))}
|
||
refine ⟨C, ?_⟩
|
||
apply Iff.intro
|
||
· intro hC
|
||
simp only [Set.mem_setOf_eq] at hC
|
||
have ⟨_, ⟨a, ⟨ha, h⟩⟩⟩ := hC
|
||
refine ⟨a, ⟨ha, ?_⟩⟩
|
||
ext x
|
||
apply Iff.intro
|
||
· intro hxy
|
||
unfold Set.prod
|
||
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq]
|
||
have ⟨b, ⟨hb, hx⟩⟩ := (h x).mp hxy
|
||
rw [Prod.ext_iff] at hx
|
||
simp only at hx
|
||
rw [← hx.right] at hb
|
||
exact ⟨hx.left, hb⟩
|
||
· intro hx
|
||
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at hx
|
||
have := (h (a, x.snd)).mpr ⟨x.snd, ⟨hx.right, rfl⟩⟩
|
||
have hxab : x = (a, x.snd) := by
|
||
ext <;> simp
|
||
exact hx.left
|
||
rwa [← hxab] at this
|
||
· intro ⟨x, ⟨hx, hy⟩⟩
|
||
show y ∈ 𝒫 Set.prod A B ∧ ∃ a, a ∈ A ∧
|
||
∀ (x : α × β), x ∈ y ↔ ∃ b, b ∈ B ∧ x = (a, b)
|
||
apply And.intro
|
||
· simp only [Set.mem_powerset_iff]
|
||
rw [hy]
|
||
unfold Set.prod
|
||
simp only [
|
||
Set.mem_singleton_iff,
|
||
Set.setOf_subset_setOf,
|
||
and_imp,
|
||
Prod.forall
|
||
]
|
||
intro a b ha hb
|
||
exact ⟨by rw [ha]; exact hx, hb⟩
|
||
· refine ⟨x, ⟨hx, ?_⟩⟩
|
||
intro p
|
||
apply Iff.intro
|
||
· intro hab
|
||
rw [hy] at hab
|
||
unfold Set.prod at hab
|
||
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq] at hab
|
||
exact ⟨p.2, ⟨hab.right, by ext; exact hab.left; simp⟩⟩
|
||
· intro ⟨b, ⟨hb, hab⟩⟩
|
||
rw [hy]
|
||
unfold Set.prod
|
||
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq]
|
||
rw [Prod.ext_iff] at hab
|
||
simp only at hab
|
||
rw [hab.right]
|
||
exact ⟨hab.left, hb⟩
|
||
|
||
/-- ### Exercise 5.5b
|
||
|
||
With `A`, `B`, and `C` as above, show that `A × B = ∪ C`.
|
||
-/
|
||
theorem exercise_5_5b {A : Set α} (B : Set β)
|
||
: Set.prod A B = ⋃₀ {Set.prod ({x} : Set α) B | x ∈ A} := by
|
||
suffices Set.prod A B ⊆ ⋃₀ {Set.prod {x} B | x ∈ A} ∧
|
||
⋃₀ {Set.prod {x} B | x ∈ A} ⊆ Set.prod A B from
|
||
Set.Subset.antisymm_iff.mpr this
|
||
apply And.intro
|
||
· show ∀ t, t ∈ Set.prod A B → t ∈ ⋃₀ {Set.prod {x} B | x ∈ A}
|
||
intro t h
|
||
simp only [Set.mem_setOf_eq] at h
|
||
unfold Set.sUnion sSup Set.instSupSetSet
|
||
simp only [Set.mem_setOf_eq, exists_exists_and_eq_and]
|
||
unfold Set.prod at h
|
||
simp only [Set.mem_setOf_eq] at h
|
||
refine ⟨t.fst, ⟨h.left, ?_⟩⟩
|
||
unfold Set.prod
|
||
simp only [Set.mem_singleton_iff, Set.mem_setOf_eq, true_and]
|
||
exact h.right
|
||
· show ∀ t, t ∈ ⋃₀ {Set.prod {x} B | x ∈ A} → t ∈ Set.prod A B
|
||
unfold Set.prod
|
||
intro t ht
|
||
simp only [
|
||
Set.mem_singleton_iff,
|
||
Set.mem_sUnion,
|
||
Set.mem_setOf_eq,
|
||
exists_exists_and_eq_and
|
||
] at ht
|
||
have ⟨a, ⟨h, ⟨ha, hb⟩⟩⟩ := ht
|
||
simp only [Set.mem_setOf_eq]
|
||
rw [← ha] at h
|
||
exact ⟨h, hb⟩
|
||
|
||
/-- ### Theorem 3D
|
||
|
||
If `⟨x, y⟩ ∈ A`, then `x` and `y` belong to `⋃ ⋃ A`.
|
||
-/
|
||
theorem theorem_3d {A : Set (Set (Set (α ⊕ α)))} (h : OrderedPair x y ∈ A)
|
||
: Sum.inl x ∈ ⋃₀ (⋃₀ A) ∧ Sum.inr y ∈ ⋃₀ (⋃₀ A) := by
|
||
have hp : OrderedPair x y ⊆ ⋃₀ A := Chapter_2.exercise_3_3 (OrderedPair x y) h
|
||
have hp' : ∀ t, t ∈ {{Sum.inl x}, {Sum.inl x, Sum.inr y}} → t ∈ ⋃₀ A := hp
|
||
|
||
have hq := hp' {Sum.inl x, Sum.inr y} (by simp)
|
||
have hq' := Chapter_2.exercise_3_3 {Sum.inl x, Sum.inr y} hq
|
||
|
||
have : ∀ t, t ∈ {Sum.inl x, Sum.inr y} → t ∈ ⋃₀ (⋃₀ A) := hq'
|
||
exact ⟨this (Sum.inl x) (by simp), this (Sum.inr y) (by simp)⟩
|
||
|
||
/-- ### Exercise 6.6
|
||
|
||
Show that a set `A` is a relation **iff** `A ⊆ dom A × ran A`.
|
||
-/
|
||
theorem exercise_6_6 {A : Set (α × β)}
|
||
: A ⊆ Set.prod (Prod.fst '' A) (Prod.snd '' A) := by
|
||
show ∀ t, t ∈ A → t ∈ Set.prod (Prod.fst '' A) (Prod.snd '' A)
|
||
intro (a, b) ht
|
||
unfold Set.prod
|
||
simp only [
|
||
Set.mem_image,
|
||
Prod.exists,
|
||
exists_and_right,
|
||
exists_eq_right,
|
||
Set.mem_setOf_eq
|
||
]
|
||
exact ⟨⟨b, ht⟩, ⟨a, ht⟩⟩
|
||
|
||
end Enderton.Set.Chapter_3 |