bookshelf/TheoremProvingInLean/Chapter5.lean

475 lines
10 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/-
Chapter 5
Tactics
-/
-- ========================================
-- Exercise 1
--
-- Go back to the exercises in Chapter 3 and Chapter 4 and redo as many as you
-- can now with tactic proofs, using also `rw` and `simp` as appropriate.
-- ========================================
namespace ex1
-- ----------------------------------------
-- Exercises 3.1
-- ----------------------------------------
section ex3_1
variable (p q r : Prop)
-- Commutativity of ∧ and
example : p ∧ q ↔ q ∧ p := by
apply Iff.intro
· intro ⟨hp, hq⟩
exact ⟨hq, hp⟩
· intro ⟨hq, hp⟩
exact ⟨hp, hq⟩
example : p q ↔ q p := by
apply Iff.intro
· intro
| Or.inl hp => exact Or.inr hp
| Or.inr hq => exact Or.inl hq
· intro
| Or.inl hq => exact Or.inr hq
| Or.inr hp => exact Or.inl hp
-- Associativity of ∧ and
example : (p ∧ q) ∧ r ↔ p ∧ (q ∧ r) := by
apply Iff.intro
· intro ⟨⟨hp, hq⟩, hr⟩
exact ⟨hp, hq, hr⟩
· intro ⟨hp, hq, hr⟩
exact ⟨⟨hp, hq⟩, hr⟩
example : (p q) r ↔ p (q r) := by
apply Iff.intro
· intro
| Or.inl (Or.inl hp) => exact Or.inl hp
| Or.inl (Or.inr hq) => exact Or.inr (Or.inl hq)
| Or.inr hr => exact Or.inr (Or.inr hr)
· intro
| Or.inl hp => exact Or.inl (Or.inl hp)
| Or.inr (Or.inl hq) => exact Or.inl (Or.inr hq)
| Or.inr (Or.inr hr) => exact Or.inr hr
-- Distributivity
example : p ∧ (q r) ↔ (p ∧ q) (p ∧ r) := by
apply Iff.intro
· intro
| ⟨hp, Or.inl hq⟩ => exact Or.inl ⟨hp, hq⟩
| ⟨hp, Or.inr hr⟩ => exact Or.inr ⟨hp, hr⟩
· intro
| Or.inl ⟨hp, hq⟩ => exact ⟨hp, Or.inl hq⟩
| Or.inr ⟨hp, hr⟩ => exact ⟨hp, Or.inr hr⟩
example : p (q ∧ r) ↔ (p q) ∧ (p r) := by
apply Iff.intro
· intro
| Or.inl hp => exact ⟨Or.inl hp, Or.inl hp⟩
| Or.inr ⟨hq, hr⟩ => exact ⟨Or.inr hq, Or.inr hr⟩
· intro
| ⟨Or.inl hp, _⟩ => exact Or.inl hp
| ⟨Or.inr _, Or.inl hp⟩ => exact Or.inl hp
| ⟨Or.inr hq, Or.inr hr⟩ => exact Or.inr ⟨hq, hr⟩
-- Other properties
example : (p → (q → r)) ↔ (p ∧ q → r) := by
apply Iff.intro
· intro h ⟨hp, hq⟩
exact h hp hq
· intro h hp hq
exact h ⟨hp, hq⟩
example : ((p q) → r) ↔ (p → r) ∧ (q → r) := by
apply Iff.intro
· intro h
apply And.intro
· intro hp
exact h (Or.inl hp)
· intro hq
exact h (Or.inr hq)
· intro ⟨hpr, hqr⟩ h
apply Or.elim h
· intro hp
exact hpr hp
· intro hq
exact hqr hq
example : ¬(p q) ↔ ¬p ∧ ¬q := by
apply Iff.intro
· intro h
apply And.intro
· intro hp
exact h (Or.inl hp)
· intro hq
exact h (Or.inr hq)
· intro ⟨np, nq⟩
intro
| Or.inl hp => exact absurd hp np
| Or.inr hq => exact absurd hq nq
example : ¬p ¬q → ¬(p ∧ q) := by
intro
| Or.inl np => intro h; exact absurd h.left np
| Or.inr nq => intro h; exact absurd h.right nq
example : ¬(p ∧ ¬p) := by
intro ⟨hp, np⟩
exact absurd hp np
example : p ∧ ¬q → ¬(p → q) := by
intro ⟨hp, nq⟩ h
exact absurd (h hp) nq
example : ¬p → (p → q) := by
intro np hp
exact absurd hp np
example : (¬p q) → (p → q) := by
intro
| Or.inl np => intro hp; exact absurd hp np
| Or.inr hq => exact fun _ => hq
example : p False ↔ p := by
apply Iff.intro
· intro
| Or.inl hp => exact hp
| Or.inr ff => exact False.elim ff
· intro hp
exact Or.inl hp
example : p ∧ False ↔ False := by
apply Iff.intro
· intro ⟨_, ff⟩
exact ff
· intro ff
exact False.elim ff
example : (p → q) → (¬q → ¬p) := by
intro hpq nq hp
exact absurd (hpq hp) nq
end ex3_1
-- ----------------------------------------
-- Exercises 3.2
-- ----------------------------------------
section ex3_2
open Classical
variable (p q r s : Prop)
example (hp : p) : (p → r s) → ((p → r) (p → s)) := by
intro h
apply (h hp).elim
· intro hr
exact Or.inl (fun _ => hr)
· intro hs
exact Or.inr (fun _ => hs)
example : ¬(p ∧ q) → ¬p ¬q := by
intro h
apply (em p).elim
· intro hp
apply (em q).elim
· intro hq
exact False.elim (h ⟨hp, hq⟩)
· intro nq
exact Or.inr nq
· intro np
exact Or.inl np
example : ¬(p → q) → p ∧ ¬q := by
intro h
apply And.intro
· apply byContradiction
intro np
apply h
intro hp
exact absurd hp np
· intro hq
apply h
intro _
exact hq
example : (p → q) → (¬p q) := by
intro hpq
apply (em p).elim
· intro hp
exact Or.inr (hpq hp)
· intro np
exact Or.inl np
example : (¬q → ¬p) → (p → q) := by
intro hqp hp
apply byContradiction
intro nq
exact absurd hp (hqp nq)
example : p ¬p := by apply em
example : (((p → q) → p) → p) := by
intro h
apply (em p).elim
· intro hp
exact hp
· intro np
apply h
intro hp
exact absurd hp np
end ex3_2
-- ----------------------------------------
-- Exercises 3.3
-- ----------------------------------------
section ex3_3
variable (p : Prop)
example (hp : p) : ¬(p ↔ ¬p) := by
intro h
exact absurd hp (h.mp hp)
end ex3_3
-- ----------------------------------------
-- Exercises 4.1
-- ----------------------------------------
section ex4_1
variable (α : Type _)
variable (p q : α → Prop)
example : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x) := by
apply Iff.intro
· intro h
apply And.intro
· intro hx; exact And.left (h hx)
· intro hx; exact And.right (h hx)
· intro h hx
have lhs : ∀ (x : α), p x := And.left h
have rhs : ∀ (x : α), q x := And.right h
exact ⟨lhs hx, rhs hx⟩
example : (∀ x, p x → q x) → (∀ x, p x) → (∀ x, q x) := by
intro h₁ h₂ hx
exact h₁ hx (h₂ hx)
example : (∀ x, p x) (∀ x, q x) → ∀ x, p x q x := by
intro
| Or.inl h => intro hx; exact Or.inl (h hx)
| Or.inr h => intro hx; exact Or.inr (h hx)
end ex4_1
-- ----------------------------------------
-- Exercises 4.2
-- ----------------------------------------
section ex4_2
variable (α : Type _)
variable (p q : α → Prop)
variable (r : Prop)
example : α → ((∀ _ : α, r) ↔ r) := by
intro ha
apply Iff.intro
· intro har
apply har
exact ha
· intro hr _
exact hr
section
open Classical
example : (∀ x, p x r) ↔ (∀ x, p x) r := by
apply Iff.intro
· intro h
apply (em r).elim
· intro hr
exact Or.inr hr
· intro nr
apply Or.inl
· intro hx
apply (h hx).elim
· exact id
· intro hr
exact absurd hr nr
· intro h₁ hx
apply h₁.elim
· intro h₂
exact Or.inl (h₂ hx)
· intro hr
exact Or.inr hr
end
example : (∀ x, r → p x) ↔ (r → ∀ x, p x) := by
apply Iff.intro
· intro h hr hx
exact h hx hr
· intro h hx hr
exact h hr hx
end ex4_2
-- ----------------------------------------
-- Exercises 4.3
-- ----------------------------------------
section ex4_3
open Classical
variable (men : Type _)
variable (barber : men)
variable (shaves : men → men → Prop)
example (h : ∀ x : men, shaves barber x ↔ ¬ shaves x x) : False := by
apply (em (shaves barber barber)).elim
· intro hb
exact absurd hb ((h barber).mp hb)
· intro nb
exact absurd ((h barber).mpr nb) nb
end ex4_3
-- ----------------------------------------
-- Exercises 4.5
-- ----------------------------------------
section ex4_5
open Classical
variable (α : Type _)
variable (p q : α → Prop)
variable (r s : Prop)
example : (∃ _ : α, r) → r := by
intro ⟨_, hr⟩
exact hr
example (a : α) : r → (∃ _ : α, r) := by
intro hr
exact ⟨a, hr⟩
example : (∃ x, p x ∧ r) ↔ (∃ x, p x) ∧ r := by
apply Iff.intro
· intro ⟨hx, hp, hr⟩
exact ⟨⟨hx, hp⟩, hr⟩
· intro ⟨⟨hx, hp⟩, hr⟩
exact ⟨hx, hp, hr⟩
example : (∃ x, p x q x) ↔ (∃ x, p x) (∃ x, q x) := by
apply Iff.intro
· intro
| ⟨hx, Or.inl hp⟩ => exact Or.inl ⟨hx, hp⟩
| ⟨hx, Or.inr hq⟩ => exact Or.inr ⟨hx, hq⟩
· intro
| Or.inl ⟨hx, hp⟩ => exact ⟨hx, Or.inl hp⟩
| Or.inr ⟨hx, hq⟩ => exact ⟨hx, Or.inr hq⟩
example : (∀ x, p x) ↔ ¬(∃ x, ¬p x) := by
apply Iff.intro
· intro ha ⟨hx, np⟩
exact absurd (ha hx) np
· intro he hx
apply byContradiction
intro np
exact he ⟨hx, np⟩
example : (∃ x, p x) ↔ ¬(∀ x, ¬p x) := by
apply Iff.intro
· intro ⟨hx, hp⟩ h
exact absurd hp (h hx)
· intro h₁
apply byContradiction
intro h₂
apply h₁
intro hx hp
exact h₂ ⟨hx, hp⟩
example : (¬∃ x, p x) ↔ (∀ x, ¬p x) := by
apply Iff.intro
· intro h hx hp
exact h ⟨hx, hp⟩
· intro h ⟨hx, hp⟩
exact absurd hp (h hx)
theorem forall_negation : (¬∀ x, p x) ↔ (∃ x, ¬p x) := by
apply Iff.intro
· intro h₁
apply byContradiction
intro h₂
exact h₁ (fun (x : α) => by
apply byContradiction
intro np
exact h₂ ⟨x, np⟩)
· intro ⟨hx, np⟩ h
exact absurd (h hx) np
example : (¬∀ x, p x) ↔ (∃ x, ¬p x) := forall_negation α p
example : (∀ x, p x → r) ↔ (∃ x, p x) → r := by
apply Iff.intro
· intro h ⟨hx, hp⟩
exact h hx hp
· intro h hx hp
exact h ⟨hx, hp⟩
example (a : α) : (∃ x, p x → r) ↔ (∀ x, p x) → r := by
apply Iff.intro
· intro ⟨hx, hp⟩ h
apply hp
exact h hx
· intro h₁
apply (em (∀ x, p x)).elim
· intro h₂
exact ⟨a, fun _ => h₁ h₂⟩
· intro h₂
have ⟨hx, np⟩ : (∃ x, ¬p x) := (forall_negation α p).mp h₂
exact ⟨hx, fun hp => absurd hp np⟩
example (a : α) : (∃ x, r → p x) ↔ (r → ∃ x, p x) := by
apply Iff.intro
· intro ⟨hx, h⟩ hr
exact ⟨hx, h hr⟩
· intro h
apply (em r).elim
· intro hr
have ⟨hx, hp⟩ := h hr
exact ⟨hx, fun _ => hp⟩
· intro nr
exact ⟨a, fun hr => absurd hr nr⟩
end ex4_5
end ex1
-- ========================================
-- Exercise 2
--
-- Use tactic combinators to obtain a one line proof of the following:
-- ========================================
namespace ex2
example (p q r : Prop) (hp : p) : (p q r) ∧ (q p r) ∧ (q r p) :=
by simp [*]
end ex2