151 lines
4.9 KiB
Plaintext
151 lines
4.9 KiB
Plaintext
import Mathlib.Data.Real.Basic
|
||
import Mathlib.Tactic.LibrarySearch
|
||
|
||
import Common.Real.Floor
|
||
|
||
/-! # Apostol.Chapter_1_11 -/
|
||
|
||
namespace Apostol.Chapter_1_11
|
||
|
||
open BigOperators
|
||
|
||
/-! ## Exercise 4
|
||
|
||
Prove that the greatest-integer function has the properties indicated.
|
||
-/
|
||
|
||
/-- ### Exercise 4a
|
||
|
||
`⌊x + n⌋ = ⌊x⌋ + n` for every integer `n`.
|
||
-/
|
||
theorem exercise_4a (x : ℝ) (n : ℤ) : ⌊x + n⌋ = ⌊x⌋ + n :=
|
||
Int.floor_add_int x n
|
||
|
||
/-- ### Exercise 4b.1
|
||
|
||
`⌊-x⌋ = -⌊x⌋` if `x` is an integer.
|
||
-/
|
||
theorem exercise_4b_1 (x : ℤ) : ⌊-x⌋ = -⌊x⌋ := by
|
||
simp only [Int.floor_int, id_eq]
|
||
|
||
/-- ### Exercise 4b.2
|
||
|
||
`⌊-x⌋ = -⌊x⌋ - 1` otherwise.
|
||
-/
|
||
theorem exercise_4b_2 (x : ℝ) (h : ∃ n : ℤ, x ∈ Set.Ioo ↑n (↑n + (1 : ℝ)))
|
||
: ⌊-x⌋ = -⌊x⌋ - 1 := by
|
||
rw [Int.floor_neg]
|
||
suffices ⌈x⌉ = ⌊x⌋ + 1 by
|
||
have := congrArg (HMul.hMul (-1)) this
|
||
simp only [neg_mul, one_mul, neg_add_rev, add_comm] at this
|
||
exact this
|
||
have ⟨n, hn⟩ := h
|
||
have hn' : x ∈ Set.Ico ↑n (↑n + (1 : ℝ)) :=
|
||
Set.mem_of_subset_of_mem Set.Ioo_subset_Ico_self hn
|
||
rw [Int.ceil_eq_iff, Int.floor_eq_on_Ico n x hn']
|
||
simp only [Int.cast_add, Int.cast_one, add_sub_cancel]
|
||
apply And.intro
|
||
· exact (Set.mem_Ioo.mp hn).left
|
||
· exact le_of_lt (Set.mem_Ico.mp hn').right
|
||
|
||
/-- ### Exercise 4c
|
||
|
||
`⌊x + y⌋ = ⌊x⌋ + ⌊y⌋` or `⌊x⌋ + ⌊y⌋ + 1`.
|
||
-/
|
||
theorem exercise_4c (x y : ℝ)
|
||
: ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ ∨ ⌊x + y⌋ = ⌊x⌋ + ⌊y⌋ + 1 := by
|
||
have hx : x = Int.floor x + Int.fract x := Eq.symm (add_eq_of_eq_sub' rfl)
|
||
have hy : y = Int.floor y + Int.fract y := Eq.symm (add_eq_of_eq_sub' rfl)
|
||
by_cases Int.fract x + Int.fract y < 1
|
||
· refine Or.inl ?_
|
||
rw [Int.floor_eq_iff]
|
||
simp only [Int.cast_add]
|
||
apply And.intro
|
||
· exact add_le_add (Int.floor_le x) (Int.floor_le y)
|
||
· conv => lhs; rw [hx, hy, add_add_add_comm]; arg 1; rw [add_comm]
|
||
rwa [add_comm, ← add_assoc, ← sub_lt_iff_lt_add', ← sub_sub, add_sub_cancel, add_sub_cancel]
|
||
· refine Or.inr ?_
|
||
rw [Int.floor_eq_iff]
|
||
simp only [Int.cast_add, Int.cast_one]
|
||
have h := le_of_not_lt h
|
||
apply And.intro
|
||
· conv => lhs; rw [← add_rotate]
|
||
conv => rhs; rw [hx, hy, add_add_add_comm]; arg 1; rw [add_comm]
|
||
rwa [← sub_le_iff_le_add', ← sub_sub, add_sub_cancel, add_sub_cancel]
|
||
· conv => lhs; rw [hx, hy, add_add_add_comm]; arg 1; rw [add_comm]
|
||
conv => lhs; rw [add_comm, ← add_assoc]
|
||
conv => rhs; rw [add_assoc]
|
||
rw [← sub_lt_iff_lt_add', ← sub_sub, add_sub_cancel, add_sub_cancel]
|
||
exact add_lt_add (Int.fract_lt_one x) (Int.fract_lt_one y)
|
||
|
||
/-- ### Exercise 5
|
||
|
||
The formulas in Exercises 4(d) and 4(e) suggest a generalization for `⌊nx⌋`.
|
||
State and prove such a generalization.
|
||
-/
|
||
theorem exercise_5 (n : ℕ) (x : ℝ)
|
||
: ⌊n * x⌋ = Finset.sum (Finset.range n) (fun i => ⌊x + i/n⌋) :=
|
||
Real.Floor.floor_mul_eq_sum_range_floor_add_index_div n x
|
||
|
||
/-- ### Exercise 4d
|
||
|
||
`⌊2x⌋ = ⌊x⌋ + ⌊x + 1/2⌋`
|
||
-/
|
||
theorem exercise_4d (x : ℝ)
|
||
: ⌊2 * x⌋ = ⌊x⌋ + ⌊x + 1/2⌋ := by
|
||
suffices ⌊x⌋ + ⌊x + 1/2⌋ = Finset.sum (Finset.range 2) (fun i => ⌊x + i/2⌋) by
|
||
rw [this]
|
||
exact exercise_5 2 x
|
||
unfold Finset.sum
|
||
simp
|
||
rw [add_comm]
|
||
|
||
/-- ### Exercise 4e
|
||
|
||
`⌊3x⌋ = ⌊x⌋ + ⌊x + 1/3⌋ + ⌊x + 2/3⌋`
|
||
-/
|
||
theorem exercise_4e (x : ℝ)
|
||
: ⌊3 * x⌋ = ⌊x⌋ + ⌊x + 1/3⌋ + ⌊x + 2/3⌋ := by
|
||
suffices ⌊x⌋ + ⌊x + 1/3⌋ + ⌊x + 2/3⌋ = Finset.sum (Finset.range 3) (fun i => ⌊x + i/3⌋) by
|
||
rw [this]
|
||
exact exercise_5 3 x
|
||
unfold Finset.sum
|
||
simp
|
||
conv => rhs; rw [← add_rotate']; arg 2; rw [add_comm]
|
||
rw [← add_assoc]
|
||
|
||
/-- ### Exercise 7b
|
||
|
||
If `a` and `b` are positive integers with no common factor, we have the formula
|
||
`∑_{n=1}^{b-1} ⌊na / b⌋ = ((a - 1)(b - 1)) / 2`. When `b = 1`, the sum on the
|
||
left is understood to be `0`.
|
||
|
||
Derive the result analytically as follows: By changing the index of summation,
|
||
note that `Σ_{n=1}^{b-1} ⌊na / b⌋ = Σ_{n=1}^{b-1} ⌊a(b - n) / b⌋`. Now apply
|
||
Exercises 4(a) and (b) to the bracket on the right.
|
||
-/
|
||
theorem exercise_7b (ha : a > 0) (hb : b > 0) (hp : Nat.coprime a b)
|
||
: ∑ n in (Finset.range b).filter (· > 0), ⌊n * ((a : ℕ) : ℝ) / b⌋ =
|
||
((a - 1) * (b - 1)) / 2 := by
|
||
sorry
|
||
|
||
/-- ### Exercise 8
|
||
|
||
Let `S` be a set of points on the real line. The *characteristic function* of
|
||
`S` is, by definition, the function `Χ` such that `Χₛ(x) = 1` for every `x` in
|
||
`S`, and `Χₛ(x) = 0` for those `x` not in `S`. Let `f` be a step function which
|
||
takes the constant value `cₖ` on the `k`th open subinterval `Iₖ` of some
|
||
partition of an interval `[a, b]`. Prove that for each `x` in the union
|
||
`I₁ ∪ I₂ ∪ ⋯ ∪ Iₙ` we have
|
||
|
||
```
|
||
f(x) = ∑_{k=1}^n cₖΧ_{Iₖ}(x).
|
||
```
|
||
|
||
This property is described by saying that every step function is a linear
|
||
combination of characteristic functions of intervals.
|
||
-/
|
||
theorem exercise_8 : True := sorry
|
||
|
||
end Apostol.Chapter_1_11
|