38 lines
868 B
TeX
38 lines
868 B
TeX
\documentclass{article}
|
|
|
|
\input{preamble}
|
|
|
|
\newcommand{\ns}{Real}
|
|
\newcommand{\linkA}[1]{\href{../Sequence/Arithmetic.html\#\ns.#1}{\ns.#1}}
|
|
\newcommand{\linkG}[1]{\href{../Sequence/Geometric.html\#\ns.#1}{\ns.#1}}
|
|
|
|
\begin{document}
|
|
|
|
\section*{Sum of Arithmetic Series}%
|
|
\label{sec:sum-arithmetic-series}
|
|
|
|
Let $(a_i)_{i \geq 0}$ be an arithmetic sequence with common difference $d$.
|
|
Then for some $n \in \mathbb{N}$,
|
|
$$\sum_{i=0}^n a_i = \frac{(n + 1)(a_0 + a_n)}{2}.$$
|
|
|
|
\begin{proof}
|
|
|
|
\linkA{Arithmetic.sum\_recursive\_closed}
|
|
|
|
\end{proof}
|
|
|
|
\section*{Sum of Geometric Series}%
|
|
\label{sec:sum-geometric-series}
|
|
|
|
Let $(a_i)_{i \geq 0}$ be a geometric sequence with common ratio $r \neq 1$.
|
|
Then for some $n \in \mathbb{N}$,
|
|
$$\sum_{i=0}^n a_i = \frac{a_0(1 - r^{n+1})}{1 - r}.$$
|
|
|
|
\begin{proof}
|
|
|
|
\linkG{Geometric.sum\_recursive\_closed}
|
|
|
|
\end{proof}
|
|
|
|
\end{document}
|