bookshelf/Common/Set/Relation.lean

279 lines
6.9 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Common.Set.OrderedPair
import Mathlib.Data.Set.Basic
import Mathlib.Data.Set.Prod
/-! # Relations
A representation of a relation, i.e. a set of ordered pairs. Like `Set`, it is
assumed a relation is homogeneous.
-/
namespace Set
/--
A relation type as defined by Enderton.
We choose to use tuples to represent our ordered pairs, as opposed to
Kuratowski's definition of a set.
Not to be confused with the Lean-provided `Rel`.
-/
abbrev Relation (α : Type _) := Set (α × α)
namespace Relation
/-! ## Domain and Range -/
/--
The domain of a `Relation`.
-/
def dom (R : Relation α) : Set α := Prod.fst '' R
/--
The first component of any pair in a `Relation` must be a member of the
`Relation`'s domain.
-/
theorem mem_pair_imp_fst_mem_dom {R : Relation α} (h : (x, y) ∈ R)
: x ∈ dom R := by
unfold dom Prod.fst
simp only [mem_image, Prod.exists, exists_and_right, exists_eq_right]
exact ⟨y, h⟩
/--
If `x ∈ dom R`, there exists some `y` such that `⟨x, y⟩ ∈ R`.
-/
theorem dom_exists {R : Relation α} (hx : x ∈ R.dom)
: ∃ y, (x, y) ∈ R := by
unfold dom at hx
simp only [mem_image, Prod.exists, exists_and_right, exists_eq_right] at hx
exact hx
/--
The range of a `Relation`.
-/
def ran (R : Relation α) : Set α := Prod.snd '' R
theorem mem_pair_imp_snd_mem_ran {R : Relation α} (h : (x, y) ∈ R)
: y ∈ ran R := by
unfold ran Prod.snd
simp only [mem_image, Prod.exists, exists_eq_right]
exact ⟨x, h⟩
/--
If `x ∈ ran R`, there exists some `t` such that `⟨t, x⟩ ∈ R`.
-/
theorem ran_exists {R : Relation α} (hx : x ∈ R.ran)
: ∃ t, (t, x) ∈ R := by
unfold ran at hx
simp only [mem_image, Prod.exists, exists_eq_right] at hx
exact hx
/--
The field of a `Relation`.
-/
def fld (R : Relation α) : Set α := dom R ran R
/--
The inverse of a `Relation`.
-/
def inv (R : Relation α) : Relation α := { (p.2, p.1) | p ∈ R }
/--
`(x, y)` is a member of relation `R` **iff** `(y, x)` is a member of `R⁻¹`.
-/
@[simp]
theorem mem_self_comm_mem_inv {R : Relation α}
: (y, x) ∈ R.inv ↔ (x, y) ∈ R := by
unfold inv
simp only [Prod.exists, mem_setOf_eq, Prod.mk.injEq]
apply Iff.intro
· intro ⟨x', y', hxy⟩
rw [← hxy.right.left, ← hxy.right.right]
exact hxy.left
· intro hxy
exact ⟨x, y, hxy, rfl, rfl⟩
/--
The inverse of the inverse of a `Relation` is the `Relation`.
-/
@[simp]
theorem inv_inv_eq_self (R : Relation α)
: R.inv.inv = R := by
unfold Set.Relation.inv
simp only [Prod.exists, Set.mem_setOf_eq, Prod.mk.injEq]
ext x
apply Iff.intro
· intro hx
have ⟨a₁, b₁, ⟨⟨a₂, b₂, h₁⟩, h₂⟩⟩ := hx
rw [← h₂, ← h₁.right.right, ← h₁.right.left]
exact h₁.left
· intro hx
have (p, q) := x
refine ⟨q, p, ⟨?_, ?_⟩⟩
· exact ⟨p, q, hx, rfl, rfl⟩
· rfl
/--
For a set `F`, `dom F⁻¹ = ran F`.
-/
@[simp]
theorem dom_inv_eq_ran_self {F : Set.Relation α}
: Set.Relation.dom (F.inv) = Set.Relation.ran F := by
ext x
unfold Set.Relation.dom Set.Relation.ran Set.Relation.inv
simp only [
Prod.exists,
Set.mem_image,
Set.mem_setOf_eq,
Prod.mk.injEq,
exists_and_right,
exists_eq_right
]
apply Iff.intro
· intro ⟨y, a, _, h⟩
rw [← h.right.left]
exact ⟨a, h.left⟩
· intro ⟨y, hy⟩
exact ⟨y, y, x, hy, rfl, rfl⟩
/--
For a set `F`, `ran F⁻¹ = dom F`.
-/
@[simp]
theorem ran_inv_eq_dom_self {F : Set.Relation α}
: Set.Relation.ran (F.inv) = Set.Relation.dom F := by
ext x
unfold Set.Relation.dom Set.Relation.ran Set.Relation.inv
simp only [
Prod.exists,
Set.mem_image,
Set.mem_setOf_eq,
Prod.mk.injEq,
exists_eq_right,
exists_and_right
]
apply Iff.intro
· intro ⟨a, y, b, h⟩
rw [← h.right.right]
exact ⟨b, h.left⟩
· intro ⟨y, hy⟩
exact ⟨y, x, y, hy, rfl, rfl⟩
/-! ## Composition -/
/--
The composition of two `Relation`s.
-/
def comp (F G : Relation α) : Relation α :=
{ p | ∃ t, (p.1, t) ∈ G ∧ (t, p.2) ∈ F}
/-! ## Restriction -/
/--
The restriction of a `Relation` to a `Set`.
-/
def restriction (R : Relation α) (A : Set α) : Relation α :=
{ p ∈ R | p.1 ∈ A }
/-! ## Image -/
/--
The image of a `Relation` under a `Set`.
-/
def image (R : Relation α) (A : Set α) : Set α :=
{ y | ∃ u ∈ A, (u, y) ∈ R }
/-! ## Single-Rooted and Single-Valued -/
/--
A `Relation` `R` is said to be single-rooted **iff** for all `y ∈ ran R`, there
exists exactly one `x` such that `⟨x, y⟩ ∈ R`.
-/
def isSingleRooted (R : Relation α) : Prop :=
∀ y ∈ R.ran, ∃! x, x ∈ R.dom ∧ (x, y) ∈ R
/--
A `Relation` `R` is said to be single-valued **iff** for all `x ∈ dom R`, there
exists exactly one `y` such that `⟨x, y⟩ ∈ R`.
Notice, a `Relation` that is single-valued is a function.
-/
def isSingleValued (R : Relation α) : Prop :=
∀ x ∈ R.dom, ∃! y, y ∈ R.ran ∧ (x, y) ∈ R
/--
For a set `F`, `F⁻¹` is a function **iff** `F` is single-rooted.
-/
theorem single_valued_inv_iff_single_rooted_self {F : Set.Relation α}
: isSingleValued F.inv ↔ isSingleRooted F := by
apply Iff.intro
· intro hF
unfold isSingleValued at hF
simp only [
dom_inv_eq_ran_self,
ran_inv_eq_dom_self,
mem_self_comm_mem_inv
] at hF
suffices ∀ x ∈ F.ran, ∃! y, (y, x) ∈ F from hF
intro x hx
have ⟨y, hy⟩ := hF x hx
simp only [
ran_inv_eq_dom_self,
mem_self_comm_mem_inv,
and_imp
] at hy
refine ⟨y, hy.left.right, ?_⟩
intro y₁ hy₁
exact hy.right y₁ (mem_pair_imp_fst_mem_dom hy₁) hy₁
· intro hF
unfold isSingleRooted at hF
unfold isSingleValued
simp only [
dom_inv_eq_ran_self,
ran_inv_eq_dom_self,
mem_self_comm_mem_inv
]
exact hF
/--
For a relation `F`, `F` is a function **iff** `F⁻¹` is single-rooted.
-/
theorem single_valued_self_iff_single_rooted_inv {F : Set.Relation α}
: Set.Relation.isSingleValued F ↔ Set.Relation.isSingleRooted F.inv := by
conv => lhs; rw [← inv_inv_eq_self F]
rw [single_valued_inv_iff_single_rooted_self]
/--
A `Relation` `R` is one-to-one if it is a single-rooted function.
-/
def isOneToOne (R : Relation α) : Prop :=
isSingleValued R ∧ isSingleRooted R
/--
A `Relation` is one-to-one **iff** it's inverse is.
-/
theorem one_to_one_self_iff_one_to_one_inv {R : Relation α}
: isOneToOne R ↔ isOneToOne R.inv := by
unfold isOneToOne isSingleValued isSingleRooted
conv => rhs; simp only [
dom_inv_eq_ran_self,
ran_inv_eq_dom_self,
mem_self_comm_mem_inv,
eq_iff_iff
]
apply Iff.intro <;>
· intro ⟨hx, hy⟩
exact ⟨hy, hx⟩
/-! ## Ordered Pairs -/
/--
Convert a `Relation` into an equivalent representation using `OrderedPair`s.
-/
def toOrderedPairs (R : Relation α) : Set (Set (Set α)) :=
-- Notice here we are using `Set.image` and *not* `Set.Relation.image`.
Set.image (fun (x, y) => OrderedPair x y) R
end Relation
end Set