464 lines
10 KiB
Plaintext
464 lines
10 KiB
Plaintext
/-! # Exercises.Avigad.Chapter5
|
||
|
||
Tactics
|
||
-/
|
||
|
||
/-! #### Exercise 1
|
||
|
||
Go back to the exercises in Chapter 3 and Chapter 4 and redo as many as you can
|
||
now with tactic proofs, using also `rw` and `simp` as appropriate.
|
||
-/
|
||
|
||
namespace Exercises.Avigad.Chapter5
|
||
|
||
namespace ex1
|
||
|
||
/-! ##### Exercises 3.1 -/
|
||
|
||
section ex3_1
|
||
|
||
variable (p q r : Prop)
|
||
|
||
-- Commutativity of ∧ and ∨
|
||
theorem and_comm' : p ∧ q ↔ q ∧ p := by
|
||
apply Iff.intro
|
||
· intro ⟨hp, hq⟩
|
||
exact ⟨hq, hp⟩
|
||
· intro ⟨hq, hp⟩
|
||
exact ⟨hp, hq⟩
|
||
|
||
theorem or_comm' : p ∨ q ↔ q ∨ p := by
|
||
apply Iff.intro
|
||
· intro
|
||
| Or.inl hp => exact Or.inr hp
|
||
| Or.inr hq => exact Or.inl hq
|
||
· intro
|
||
| Or.inl hq => exact Or.inr hq
|
||
| Or.inr hp => exact Or.inl hp
|
||
|
||
-- Associativity of ∧ and ∨
|
||
theorem and_assoc : (p ∧ q) ∧ r ↔ p ∧ (q ∧ r) := by
|
||
apply Iff.intro
|
||
· intro ⟨⟨hp, hq⟩, hr⟩
|
||
exact ⟨hp, hq, hr⟩
|
||
· intro ⟨hp, hq, hr⟩
|
||
exact ⟨⟨hp, hq⟩, hr⟩
|
||
|
||
theorem or_assoc' : (p ∨ q) ∨ r ↔ p ∨ (q ∨ r) := by
|
||
apply Iff.intro
|
||
· intro
|
||
| Or.inl (Or.inl hp) => exact Or.inl hp
|
||
| Or.inl (Or.inr hq) => exact Or.inr (Or.inl hq)
|
||
| Or.inr hr => exact Or.inr (Or.inr hr)
|
||
· intro
|
||
| Or.inl hp => exact Or.inl (Or.inl hp)
|
||
| Or.inr (Or.inl hq) => exact Or.inl (Or.inr hq)
|
||
| Or.inr (Or.inr hr) => exact Or.inr hr
|
||
|
||
-- Distributivity
|
||
theorem and_or_left : p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r) := by
|
||
apply Iff.intro
|
||
· intro
|
||
| ⟨hp, Or.inl hq⟩ => exact Or.inl ⟨hp, hq⟩
|
||
| ⟨hp, Or.inr hr⟩ => exact Or.inr ⟨hp, hr⟩
|
||
· intro
|
||
| Or.inl ⟨hp, hq⟩ => exact ⟨hp, Or.inl hq⟩
|
||
| Or.inr ⟨hp, hr⟩ => exact ⟨hp, Or.inr hr⟩
|
||
|
||
theorem or_and_left : p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (p ∨ r) := by
|
||
apply Iff.intro
|
||
· intro
|
||
| Or.inl hp => exact ⟨Or.inl hp, Or.inl hp⟩
|
||
| Or.inr ⟨hq, hr⟩ => exact ⟨Or.inr hq, Or.inr hr⟩
|
||
· intro
|
||
| ⟨Or.inl hp, _⟩ => exact Or.inl hp
|
||
| ⟨Or.inr _, Or.inl hp⟩ => exact Or.inl hp
|
||
| ⟨Or.inr hq, Or.inr hr⟩ => exact Or.inr ⟨hq, hr⟩
|
||
|
||
-- Other properties
|
||
theorem imp_imp_iff_and_imp : (p → (q → r)) ↔ (p ∧ q → r) := by
|
||
apply Iff.intro
|
||
· intro h ⟨hp, hq⟩
|
||
exact h hp hq
|
||
· intro h hp hq
|
||
exact h ⟨hp, hq⟩
|
||
|
||
theorem or_imp : ((p ∨ q) → r) ↔ (p → r) ∧ (q → r) := by
|
||
apply Iff.intro
|
||
· intro h
|
||
apply And.intro
|
||
· intro hp
|
||
exact h (Or.inl hp)
|
||
· intro hq
|
||
exact h (Or.inr hq)
|
||
· intro ⟨hpr, hqr⟩ h
|
||
apply Or.elim h
|
||
· intro hp
|
||
exact hpr hp
|
||
· intro hq
|
||
exact hqr hq
|
||
|
||
theorem nor_or : ¬(p ∨ q) ↔ ¬p ∧ ¬q := by
|
||
apply Iff.intro
|
||
· intro h
|
||
apply And.intro
|
||
· intro hp
|
||
exact h (Or.inl hp)
|
||
· intro hq
|
||
exact h (Or.inr hq)
|
||
· intro ⟨np, nq⟩
|
||
intro
|
||
| Or.inl hp => exact absurd hp np
|
||
| Or.inr hq => exact absurd hq nq
|
||
|
||
theorem not_and_or_mpr : ¬p ∨ ¬q → ¬(p ∧ q) := by
|
||
intro
|
||
| Or.inl np => intro h; exact absurd h.left np
|
||
| Or.inr nq => intro h; exact absurd h.right nq
|
||
|
||
theorem and_not_self : ¬(p ∧ ¬p) := by
|
||
intro ⟨hp, np⟩
|
||
exact absurd hp np
|
||
|
||
theorem not_imp_o_and_not : p ∧ ¬q → ¬(p → q) := by
|
||
intro ⟨hp, nq⟩ h
|
||
exact absurd (h hp) nq
|
||
|
||
theorem false_elim_self : ¬p → (p → q) := by
|
||
intro np hp
|
||
exact absurd hp np
|
||
|
||
theorem not_or_imp_imp : (¬p ∨ q) → (p → q) := by
|
||
intro
|
||
| Or.inl np => intro hp; exact absurd hp np
|
||
| Or.inr hq => exact fun _ => hq
|
||
|
||
theorem or_false_iff : p ∨ False ↔ p := by
|
||
apply Iff.intro
|
||
· intro
|
||
| Or.inl hp => exact hp
|
||
| Or.inr ff => exact False.elim ff
|
||
· intro hp
|
||
exact Or.inl hp
|
||
|
||
theorem and_false_iff : p ∧ False ↔ False := by
|
||
apply Iff.intro
|
||
· intro ⟨_, ff⟩
|
||
exact ff
|
||
· intro ff
|
||
exact False.elim ff
|
||
|
||
theorem imp_imp_not_imp_not : (p → q) → (¬q → ¬p) := by
|
||
intro hpq nq hp
|
||
exact absurd (hpq hp) nq
|
||
|
||
end ex3_1
|
||
|
||
/-! ##### Exercises 3.2 -/
|
||
|
||
section ex3_2
|
||
|
||
open Classical
|
||
|
||
variable (p q r s : Prop)
|
||
|
||
theorem imp_or_mp (hp : p) : (p → r ∨ s) → ((p → r) ∨ (p → s)) := by
|
||
intro h
|
||
apply (h hp).elim
|
||
· intro hr
|
||
exact Or.inl (fun _ => hr)
|
||
· intro hs
|
||
exact Or.inr (fun _ => hs)
|
||
|
||
theorem not_and_iff_or_not : ¬(p ∧ q) → ¬p ∨ ¬q := by
|
||
intro h
|
||
apply (em p).elim
|
||
· intro hp
|
||
apply (em q).elim
|
||
· intro hq
|
||
exact False.elim (h ⟨hp, hq⟩)
|
||
· intro nq
|
||
exact Or.inr nq
|
||
· intro np
|
||
exact Or.inl np
|
||
|
||
theorem not_imp_mp : ¬(p → q) → p ∧ ¬q := by
|
||
intro h
|
||
apply And.intro
|
||
· apply byContradiction
|
||
intro np
|
||
apply h
|
||
intro hp
|
||
exact absurd hp np
|
||
· intro hq
|
||
apply h
|
||
intro _
|
||
exact hq
|
||
|
||
theorem not_or_of_imp : (p → q) → (¬p ∨ q) := by
|
||
intro hpq
|
||
apply (em p).elim
|
||
· intro hp
|
||
exact Or.inr (hpq hp)
|
||
· intro np
|
||
exact Or.inl np
|
||
|
||
theorem not_imp_not_imp_imp : (¬q → ¬p) → (p → q) := by
|
||
intro hqp hp
|
||
apply byContradiction
|
||
intro nq
|
||
exact absurd hp (hqp nq)
|
||
|
||
theorem or_not : p ∨ ¬p := by apply em
|
||
|
||
theorem imp_imp_imp : (((p → q) → p) → p) := by
|
||
intro h
|
||
apply (em p).elim
|
||
· intro hp
|
||
exact hp
|
||
· intro np
|
||
apply h
|
||
intro hp
|
||
exact absurd hp np
|
||
|
||
end ex3_2
|
||
|
||
/-! ##### Exercises 3.3 -/
|
||
|
||
section ex3_3
|
||
|
||
variable (p : Prop)
|
||
|
||
theorem iff_not_self (hp : p) : ¬(p ↔ ¬p) := by
|
||
intro h
|
||
exact absurd hp (h.mp hp)
|
||
|
||
end ex3_3
|
||
|
||
/-! ##### Exercises 4.1 -/
|
||
|
||
section ex4_1
|
||
|
||
variable (α : Type _)
|
||
variable (p q : α → Prop)
|
||
|
||
theorem forall_and : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x) := by
|
||
apply Iff.intro
|
||
· intro h
|
||
apply And.intro
|
||
· intro hx; exact And.left (h hx)
|
||
· intro hx; exact And.right (h hx)
|
||
· intro h hx
|
||
have lhs : ∀ (x : α), p x := And.left h
|
||
have rhs : ∀ (x : α), q x := And.right h
|
||
exact ⟨lhs hx, rhs hx⟩
|
||
|
||
theorem forall_imp_distrib : (∀ x, p x → q x) → (∀ x, p x) → (∀ x, q x) := by
|
||
intro h₁ h₂ hx
|
||
exact h₁ hx (h₂ hx)
|
||
|
||
theorem forall_or_distrib : (∀ x, p x) ∨ (∀ x, q x) → ∀ x, p x ∨ q x := by
|
||
intro
|
||
| Or.inl h => intro hx; exact Or.inl (h hx)
|
||
| Or.inr h => intro hx; exact Or.inr (h hx)
|
||
|
||
end ex4_1
|
||
|
||
/-! ##### Exercises 4.2 -/
|
||
|
||
section ex4_2
|
||
|
||
variable (α : Type _)
|
||
variable (p q : α → Prop)
|
||
variable (r : Prop)
|
||
|
||
theorem self_imp_forall : α → ((∀ _ : α, r) ↔ r) := by
|
||
intro ha
|
||
apply Iff.intro
|
||
· intro har
|
||
apply har
|
||
exact ha
|
||
· intro hr _
|
||
exact hr
|
||
|
||
section
|
||
|
||
open Classical
|
||
|
||
theorem forall_or_right : (∀ x, p x ∨ r) ↔ (∀ x, p x) ∨ r := by
|
||
apply Iff.intro
|
||
· intro h
|
||
apply (em r).elim
|
||
· intro hr
|
||
exact Or.inr hr
|
||
· intro nr
|
||
apply Or.inl
|
||
· intro hx
|
||
apply (h hx).elim
|
||
· exact id
|
||
· intro hr
|
||
exact absurd hr nr
|
||
· intro h₁ hx
|
||
apply h₁.elim
|
||
· intro h₂
|
||
exact Or.inl (h₂ hx)
|
||
· intro hr
|
||
exact Or.inr hr
|
||
|
||
end
|
||
|
||
theorem forall_swap : (∀ x, r → p x) ↔ (r → ∀ x, p x) := by
|
||
apply Iff.intro
|
||
· intro h hr hx
|
||
exact h hx hr
|
||
· intro h hx hr
|
||
exact h hr hx
|
||
|
||
end ex4_2
|
||
|
||
/-! ##### Exercises 4.3 -/
|
||
|
||
section ex4_3
|
||
|
||
open Classical
|
||
|
||
variable (men : Type _)
|
||
variable (barber : men)
|
||
variable (shaves : men → men → Prop)
|
||
|
||
theorem barber_paradox (h : ∀ x : men, shaves barber x ↔ ¬ shaves x x)
|
||
: False := by
|
||
apply (em (shaves barber barber)).elim
|
||
· intro hb
|
||
exact absurd hb ((h barber).mp hb)
|
||
· intro nb
|
||
exact absurd ((h barber).mpr nb) nb
|
||
|
||
end ex4_3
|
||
|
||
/-! ##### Exercises 4.5 -/
|
||
|
||
section ex4_5
|
||
|
||
open Classical
|
||
|
||
variable (α : Type _)
|
||
variable (p q : α → Prop)
|
||
variable (r s : Prop)
|
||
|
||
theorem exists_imp : (∃ _ : α, r) → r := by
|
||
intro ⟨_, hr⟩
|
||
exact hr
|
||
|
||
theorem exists_intro (a : α) : r → (∃ _ : α, r) := by
|
||
intro hr
|
||
exact ⟨a, hr⟩
|
||
|
||
theorem exists_and_right : (∃ x, p x ∧ r) ↔ (∃ x, p x) ∧ r := by
|
||
apply Iff.intro
|
||
· intro ⟨hx, hp, hr⟩
|
||
exact ⟨⟨hx, hp⟩, hr⟩
|
||
· intro ⟨⟨hx, hp⟩, hr⟩
|
||
exact ⟨hx, hp, hr⟩
|
||
|
||
theorem exists_or : (∃ x, p x ∨ q x) ↔ (∃ x, p x) ∨ (∃ x, q x) := by
|
||
apply Iff.intro
|
||
· intro
|
||
| ⟨hx, Or.inl hp⟩ => exact Or.inl ⟨hx, hp⟩
|
||
| ⟨hx, Or.inr hq⟩ => exact Or.inr ⟨hx, hq⟩
|
||
· intro
|
||
| Or.inl ⟨hx, hp⟩ => exact ⟨hx, Or.inl hp⟩
|
||
| Or.inr ⟨hx, hq⟩ => exact ⟨hx, Or.inr hq⟩
|
||
|
||
theorem forall_iff_not_exists : (∀ x, p x) ↔ ¬(∃ x, ¬p x) := by
|
||
apply Iff.intro
|
||
· intro ha ⟨hx, np⟩
|
||
exact absurd (ha hx) np
|
||
· intro he hx
|
||
apply byContradiction
|
||
intro np
|
||
exact he ⟨hx, np⟩
|
||
|
||
theorem exists_iff_not_forall : (∃ x, p x) ↔ ¬(∀ x, ¬p x) := by
|
||
apply Iff.intro
|
||
· intro ⟨hx, hp⟩ h
|
||
exact absurd hp (h hx)
|
||
· intro h₁
|
||
apply byContradiction
|
||
intro h₂
|
||
apply h₁
|
||
intro hx hp
|
||
exact h₂ ⟨hx, hp⟩
|
||
|
||
theorem not_exists : (¬∃ x, p x) ↔ (∀ x, ¬p x) := by
|
||
apply Iff.intro
|
||
· intro h hx hp
|
||
exact h ⟨hx, hp⟩
|
||
· intro h ⟨hx, hp⟩
|
||
exact absurd hp (h hx)
|
||
|
||
theorem forall_negation : (¬∀ x, p x) ↔ (∃ x, ¬p x) := by
|
||
apply Iff.intro
|
||
· intro h₁
|
||
apply byContradiction
|
||
intro h₂
|
||
exact h₁ (fun (x : α) => by
|
||
apply byContradiction
|
||
intro np
|
||
exact h₂ ⟨x, np⟩)
|
||
· intro ⟨hx, np⟩ h
|
||
exact absurd (h hx) np
|
||
|
||
theorem not_forall : (¬∀ x, p x) ↔ (∃ x, ¬p x) := forall_negation α p
|
||
|
||
theorem forall_iff_exists_imp : (∀ x, p x → r) ↔ (∃ x, p x) → r := by
|
||
apply Iff.intro
|
||
· intro h ⟨hx, hp⟩
|
||
exact h hx hp
|
||
· intro h hx hp
|
||
exact h ⟨hx, hp⟩
|
||
|
||
theorem exists_iff_forall_imp (a : α) : (∃ x, p x → r) ↔ (∀ x, p x) → r := by
|
||
apply Iff.intro
|
||
· intro ⟨hx, hp⟩ h
|
||
apply hp
|
||
exact h hx
|
||
· intro h₁
|
||
apply (em (∀ x, p x)).elim
|
||
· intro h₂
|
||
exact ⟨a, fun _ => h₁ h₂⟩
|
||
· intro h₂
|
||
have ⟨hx, np⟩ : (∃ x, ¬p x) := (forall_negation α p).mp h₂
|
||
exact ⟨hx, fun hp => absurd hp np⟩
|
||
|
||
theorem exists_self_iff_self_exists (a : α)
|
||
: (∃ x, r → p x) ↔ (r → ∃ x, p x) := by
|
||
apply Iff.intro
|
||
· intro ⟨hx, h⟩ hr
|
||
exact ⟨hx, h hr⟩
|
||
· intro h
|
||
apply (em r).elim
|
||
· intro hr
|
||
have ⟨hx, hp⟩ := h hr
|
||
exact ⟨hx, fun _ => hp⟩
|
||
· intro nr
|
||
exact ⟨a, fun hr => absurd hr nr⟩
|
||
|
||
end ex4_5
|
||
|
||
end ex1
|
||
|
||
/-! #### Exercise 2
|
||
|
||
Use tactic combinators to obtain a one line proof of the following:
|
||
-/
|
||
|
||
namespace ex2
|
||
|
||
theorem or_and_or_and_or (p q r : Prop) (hp : p)
|
||
: (p ∨ q ∨ r) ∧ (q ∨ p ∨ r) ∧ (q ∨ r ∨ p) := by
|
||
simp [*]
|
||
|
||
end ex2
|
||
|
||
end Exercises.Avigad.Chapter5 |