348 lines
10 KiB
TeX
348 lines
10 KiB
TeX
\documentclass{report}
|
|
|
|
\input{../../preamble}
|
|
\makeleancommands{../..}
|
|
|
|
\begin{document}
|
|
|
|
\header{Elements of Set Theory}{Herbert B. Enderton}
|
|
|
|
\tableofcontents
|
|
|
|
\begingroup
|
|
\renewcommand\thechapter{R}
|
|
\setcounter{chapter}{0}
|
|
\addtocounter{chapter}{-1}
|
|
|
|
\chapter{Reference}%
|
|
\label{chap:reference}
|
|
|
|
\section{\defined{Powerset}}%
|
|
\label{ref:powerset}
|
|
|
|
The \textbf{powerset} of some set $A$ is the set of all subsets of $A$.
|
|
|
|
\begin{definition}
|
|
|
|
\lean{Mathlib/Init/Set}{Set.powerset}
|
|
|
|
\end{definition}
|
|
|
|
\section{\defined{Principle of Extensionality}}%
|
|
\label{ref:principle-extensionality}
|
|
|
|
If $A$ and $B$ are sets such that for every object $t$,
|
|
$$t \in A \quad\text{iff}\quad t \in B,$$
|
|
then $A = B$.
|
|
|
|
\begin{axiom}
|
|
|
|
\lean{Mathlib/Init/Set}{Set.ext}
|
|
|
|
\end{axiom}
|
|
|
|
\endgroup
|
|
|
|
\chapter{Introduction}%
|
|
\label{chap:introduction}
|
|
|
|
\section{Baby Set Theory}%
|
|
\label{sec:baby-set-theory}
|
|
|
|
\subsection{\verified{Exercise 1.1}}%
|
|
\label{sub:exercise-1.1}
|
|
|
|
Which of the following become true when "$\in$" is inserted in place of the
|
|
blank?
|
|
Which become true when "$\subseteq$" is inserted?
|
|
|
|
\subsubsection{\verified{Exercise 1.1a}}%
|
|
\label{ssub:exercise-1.1a}
|
|
|
|
$\{\emptyset\} \_\_\_\_ \{\emptyset, \{\emptyset\}\}$.
|
|
|
|
\begin{proof}
|
|
|
|
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
|
{Enderton.Set.Chapter\_1.exercise\_1\_1a}
|
|
|
|
Because the \textit{object} $\{\emptyset\}$ is a member of the right-hand set,
|
|
the statement is \textbf{true} in the case of "$\in$".
|
|
|
|
Because the \textit{members} of $\{\emptyset\}$ are all members of the
|
|
right-hand set, the statement is also \textbf{true} in the case of
|
|
"$\subseteq$".
|
|
|
|
\end{proof}
|
|
|
|
\subsubsection{\verified{Exercise 1.1b}}%
|
|
\label{ssub:exercise-1.11b}
|
|
|
|
$\{\emptyset\} \_\_\_\_ \{\emptyset, \{\{\emptyset\}\}\}$.
|
|
|
|
\begin{proof}
|
|
|
|
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
|
{Enderton.Set.Chapter\_1.exercise\_1\_1b}
|
|
|
|
Because the \textit{object} $\{\emptyset\}$ is not a member of the right-hand
|
|
set, the statement is \textbf{false} in the case of "$\in$".
|
|
|
|
Because the \textit{members} of $\{\emptyset\}$ are all members of the
|
|
right-hand set, the statement is \textbf{true} in the case of "$\subseteq$".
|
|
|
|
\end{proof}
|
|
|
|
\subsubsection{\verified{Exercise 1.1c}}%
|
|
\label{ssub:exercise-1.1c}
|
|
|
|
$\{\{\emptyset\}\} \_\_\_\_ \{\emptyset, \{\emptyset\}\}$.
|
|
|
|
\begin{proof}
|
|
|
|
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
|
{Enderton.Set.Chapter\_1.exercise\_1\_1c}
|
|
|
|
Because the \textit{object} $\{\{\emptyset\}\}$ is not a member of the
|
|
right-hand set, the statement is \textbf{false} in the case of "$\in$".
|
|
|
|
Because the \textit{members} of $\{\{\emptyset\}\}$ are all members of the
|
|
right-hand set, the statement is \textbf{true} in the case of "$\subseteq$".
|
|
|
|
\end{proof}
|
|
|
|
\subsubsection{\verified{Exercise 1.1d}}%
|
|
\label{ssub:exercise-1.1d}
|
|
|
|
$\{\{\emptyset\}\} \_\_\_\_ \{\emptyset, \{\{\emptyset\}\}\}$.
|
|
|
|
\begin{proof}
|
|
|
|
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
|
{Enderton.Set.Chapter\_1.exercise\_1\_1d}
|
|
|
|
Because the \textit{object} $\{\{\emptyset\}\}$ is a member of the right-hand
|
|
set, the statement is \textbf{true} in the case of "$\in$".
|
|
|
|
Because the \textit{members} of $\{\{\emptyset\}\}$ are not all members of the
|
|
right-hand set, the statement is \textbf{false} in the case of
|
|
"$\subseteq$".
|
|
|
|
\end{proof}
|
|
|
|
\subsubsection{\verified{Exercise 1.1e}}%
|
|
\label{ssub:exercise-1.1e}
|
|
|
|
$\{\{\emptyset\}\} \_\_ \{\emptyset, \{\emptyset, \{\emptyset\}\}\}$.
|
|
|
|
\begin{proof}
|
|
|
|
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
|
{Enderton.Set.Chapter\_1.exercise\_1\_1e}
|
|
|
|
Because the \textit{object} $\{\{\emptyset\}\}$ is not a member of the
|
|
right-hand set, the statement is \textbf{false} in the case of "$\in$".
|
|
|
|
Because the \textit{members} of $\{\{\emptyset\}\}$ are not all members of the
|
|
right-hand set, the statement is \textbf{false} in the case of
|
|
"$\subseteq$".
|
|
|
|
\end{proof}
|
|
|
|
\subsection{\verified{Exercise 1.2}}%
|
|
\label{sub:exercise-1.2}
|
|
|
|
Show that no two of the three sets $\emptyset$, $\{\emptyset\}$, and
|
|
$\{\{\emptyset\}\}$ are equal to each other.
|
|
|
|
\begin{proof}
|
|
|
|
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
|
{Enderton.Set.Chapter\_1.exercise\_1\_2}
|
|
|
|
By the \nameref{ref:principle-extensionality}, $\emptyset$ is only equal to
|
|
$\emptyset$.
|
|
This immediately shows it is not equal to the other two.
|
|
Now consider object $\emptyset$.
|
|
This object is a member of $\{\emptyset\}$ but is not a member of
|
|
$\{\{\emptyset\}\}$.
|
|
Again, by the \nameref{ref:principle-extensionality}, these two sets must be
|
|
different.
|
|
|
|
\end{proof}
|
|
|
|
\subsection{\verified{Exercise 1.3}}%
|
|
\label{sub:exercise-1.3}
|
|
|
|
Show that if $B \subseteq C$, then $\powerset{B} \subseteq \powerset{C}$.
|
|
|
|
\begin{proof}
|
|
|
|
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
|
{Enderton.Set.Chapter\_1.exercise\_1\_3}
|
|
|
|
Let $x \in \powerset{B}$.
|
|
By definition of the \nameref{ref:powerset}, $x$ is a subset of $B$.
|
|
By hypothesis, $B \subseteq C$.
|
|
Then $x \subseteq C$.
|
|
Again by definition of the \nameref{ref:powerset}, it follows
|
|
$x \in \powerset{C}$.
|
|
|
|
\end{proof}
|
|
|
|
\subsection{\verified{Exercise 1.4}}%
|
|
\label{sub:exercise-1.4}
|
|
|
|
Assume that $x$ and $y$ are members of a set $B$.
|
|
Show that $\{\{x\}, \{x, y\}\} \in \powerset{\powerset{B}}.$
|
|
|
|
\begin{proof}
|
|
|
|
\lean{Bookshelf/Enderton/Set/Chapter\_1}
|
|
{Enderton.Set.Chapter\_1.exercise\_1\_4}
|
|
|
|
Let $x$ and $y$ be members of set $B$.
|
|
Then $\{x\}$ and $\{x, y\}$ are subsets of $B$.
|
|
By definition of the \nameref{ref:powerset}, $\{x\}$ and $\{x, y\}$ are
|
|
members of $\powerset{B}$.
|
|
Then $\{\{x\}, \{x, y\}\}$ is a subset of $\powerset{B}$.
|
|
By definition of the \nameref{ref:powerset}, $\{\{x\}, \{x, y\}\}$ is a member
|
|
of $\powerset{\powerset{B}}$.
|
|
|
|
\end{proof}
|
|
|
|
\section{Sets - An Informal View}%
|
|
\label{sec:sets-informal-view}
|
|
|
|
\subsection{\partial{Exercise 2.1}}%
|
|
\label{sub:exercise-2.1}
|
|
|
|
Define the rank of a set $c$ to be the least $\alpha$ such that
|
|
$c \subseteq V_\alpha$.
|
|
Compute the rank of $\{\{\emptyset\}\}$.
|
|
Compute the rank of
|
|
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$.
|
|
|
|
\begin{proof}
|
|
|
|
We first compute the values of $V_n$ for $0 \leq n \leq 3$ under the
|
|
assumption the set of atoms $A$ at the bottom of the hierarchy is empty.
|
|
\begin{align*}
|
|
V_0 & = \emptyset \\
|
|
V_1 & = V_0 \cup \powerset{V_0} \\
|
|
& = \emptyset \cup \{\emptyset\} \\
|
|
& = \{\emptyset\} \\
|
|
V_2 & = V_1 \cup \powerset{V_1} \\
|
|
& = \{\emptyset\} \cup \powerset{\{\emptyset\}} \\
|
|
& = \{\emptyset\} \cup \{\emptyset, \{\emptyset\}\} \\
|
|
& = \{\emptyset, \{\emptyset\}\} \\
|
|
V_3 & = V_2 \cup \powerset{V_2} \\
|
|
& = \{\emptyset, \{\emptyset\}\} \cup
|
|
\powerset{\{\emptyset, \{\emptyset\}\}} \\
|
|
& = \{\emptyset, \{\emptyset\}\} \cup
|
|
\{\emptyset,
|
|
\{\emptyset\},
|
|
\{\{\emptyset\}\},
|
|
\{\emptyset, \{\emptyset\}\}\} \\
|
|
& = \{\emptyset,
|
|
\{\emptyset\},
|
|
\{\{\emptyset\}\},
|
|
\{\emptyset, \{\emptyset\}\}\}
|
|
\end{align*}
|
|
It then immediately follows $\{\{\emptyset\}\}$ has rank $2$ and
|
|
$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$ has rank $3$.
|
|
|
|
\end{proof}
|
|
|
|
\subsection{\partial{Exercise 2.2}}%
|
|
\label{sub:exercise-2.2}
|
|
|
|
We have stated that $V_{\alpha + 1} = A \cup \powerset{V_\alpha}$.
|
|
Prove this at least for $\alpha < 3$.
|
|
|
|
\begin{proof}
|
|
|
|
Let $A$ be the set of atoms in our set hierarchy.
|
|
Let $P(n)$ be the predicate, "$V_{n + 1} = A \cup \powerset{V_n}$."
|
|
We prove $P(n)$ holds true for all natural numbers $n \geq 1$ via induction.
|
|
|
|
\paragraph{Base Case}%
|
|
|
|
Let $n = 1$.
|
|
By definition, $V_1 = V_0 \cup \powerset{V_0}$.
|
|
By definition, $V_0 = A$.
|
|
Therefore $V_1 = A \cup \powerset{V_0}$.
|
|
This proves $P(1)$ holds true.
|
|
|
|
\paragraph{Induction Step}%
|
|
|
|
Suppose $P(n)$ holds true for some $n \geq 1$.
|
|
Consider $V_{n+1}$.
|
|
By definition, $V_{n+1} = V_n \cup \powerset{V_n}$.
|
|
Therefore, by the induction hypothesis,
|
|
\begin{align}
|
|
V_{n+1}
|
|
& = V_n \cup \powerset{V_n}
|
|
\nonumber \\
|
|
& = (A \cup \powerset{V_{n-1}}) \cup \powerset{V_n}
|
|
\nonumber \\
|
|
& = A \cup (\powerset{V_{n-1}} \cup \powerset{V_n})
|
|
\label{sub:exercise-2.2-eq1}
|
|
\end{align}
|
|
But $V_{n-1}$ is a subset of $V_n$.
|
|
\nameref{sub:exercise-1.3} then implies
|
|
$\powerset{V_{n-1}} \subseteq \powerset{V_n}$.
|
|
This means \eqref{sub:exercise-2.2-eq1} can be simplified to
|
|
$$V_{n+1} = A \cup \powerset{V_n},$$
|
|
proving $P(n+1)$ holds true.
|
|
|
|
\paragraph{Conclusion}%
|
|
|
|
By mathematical induction, it follows for all $n \geq 1$, $P(n)$ is true.
|
|
|
|
\end{proof}
|
|
|
|
\subsection{\partial{Exercise 2.3}}%
|
|
\label{sub:exercise-2.3}
|
|
|
|
List all the members of $V_3$.
|
|
List all the members of $V_4$.
|
|
(It is to be assumed here that there are no atoms.)
|
|
|
|
\begin{proof}
|
|
|
|
As seen in the proof of \nameref{sub:exercise-2.1},
|
|
$$V_3 = \{
|
|
\emptyset,
|
|
\{\emptyset\},
|
|
\{\{\emptyset\}\},
|
|
\{\emptyset, \{\emptyset\}\}
|
|
\}.$$
|
|
By \nameref{sub:exercise-2.2}, $V_4 = \powerset{V_3}$ (since it is assumed
|
|
there are no atoms).
|
|
Thus
|
|
\begin{align*}
|
|
& V_4 = \{ \\
|
|
& \qquad \emptyset, \\
|
|
& \qquad \{\emptyset\}, \\
|
|
& \qquad \{\{\emptyset\}\}, \\
|
|
& \qquad \{\{\{\emptyset\}\}\}, \\
|
|
& \qquad \{\{\emptyset, \{\emptyset\}\}\}, \\
|
|
& \qquad \{\emptyset, \{\emptyset\}\}, \\
|
|
& \qquad \{\emptyset, \{\{\emptyset\}\}\}, \\
|
|
& \qquad \{\emptyset, \{\emptyset, \{\emptyset\}\}\}, \\
|
|
& \qquad \{\{\emptyset\}, \{\{\emptyset\}\}\}, \\
|
|
& \qquad \{\{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \\
|
|
& \qquad \{\{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}, \\
|
|
& \qquad \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \\
|
|
& \qquad \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \\
|
|
& \qquad \{\emptyset, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \\
|
|
& \qquad \{\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}, \\
|
|
& \qquad \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \\
|
|
& \}.
|
|
\end{align*}
|
|
|
|
\end{proof}
|
|
|
|
\end{document}
|