bookshelf/Common/Set/Basic.lean

41 lines
1.1 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Mathlib.Data.Set.Basic
/-! # Common.Set.Basic
Additional theorems and definitions useful in the context of sets.
-/
namespace Set
/-
The Minkowski sum of two sets `s` and `t` is the set
`s + t = { a + b : a ∈ s, b ∈ t }`.
-/
def minkowskiSum {α : Type u} [Add α] (s t : Set α) :=
{ x | ∃ a ∈ s, ∃ b ∈ t, x = a + b }
/--
The sum of two sets is nonempty **iff** the summands are nonempty.
-/
theorem nonempty_minkowski_sum_iff_nonempty_add_nonempty {α : Type u} [Add α]
{s t : Set α}
: (minkowskiSum s t).Nonempty ↔ s.Nonempty ∧ t.Nonempty := by
apply Iff.intro
· intro h
have ⟨x, hx⟩ := h
have ⟨a, ⟨ha, ⟨b, ⟨hb, _⟩⟩⟩⟩ := hx
apply And.intro
· exact ⟨a, ha⟩
· exact ⟨b, hb⟩
· intro ⟨⟨a, ha⟩, ⟨b, hb⟩⟩
exact ⟨a + b, ⟨a, ⟨ha, ⟨b, ⟨hb, rfl⟩⟩⟩⟩⟩
/--
The characteristic function of a set `S`.
It returns `1` if the specified input belongs to `S` and `0` otherwise.
-/
def characteristic (S : Set α) (x : α) [Decidable (x ∈ S)] : Nat :=
if x ∈ S then 1 else 0
end Set