bookshelf/Common/Set/Basic.lean

148 lines
3.6 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Mathlib.Data.Set.Basic
import Common.Logic.Basic
/-! # Common.Set.Basic
Additional theorems and definitions useful in the context of `Set`s.
-/
namespace Set
/-! ## Minkowski Sum -/
/-
The Minkowski sum of two `Set`s `s` and `t` is the set
`s + t = { a + b : a ∈ s, b ∈ t }`.
-/
def minkowskiSum {α : Type u} [Add α] (s t : Set α) :=
{ x | ∃ a ∈ s, ∃ b ∈ t, x = a + b }
/--
The sum of two `Set`s is nonempty **iff** the summands are nonempty.
-/
theorem nonempty_minkowski_sum_iff_nonempty_add_nonempty {α : Type u} [Add α]
{s t : Set α}
: (minkowskiSum s t).Nonempty ↔ s.Nonempty ∧ t.Nonempty := by
apply Iff.intro
· intro h
have ⟨x, hx⟩ := h
have ⟨a, ⟨ha, ⟨b, ⟨hb, _⟩⟩⟩⟩ := hx
apply And.intro
· exact ⟨a, ha⟩
· exact ⟨b, hb⟩
· intro ⟨⟨a, ha⟩, ⟨b, hb⟩⟩
exact ⟨a + b, ⟨a, ⟨ha, ⟨b, ⟨hb, rfl⟩⟩⟩⟩⟩
/-! ## Characteristic Function -/
/--
The characteristic function of a `Set` `S`.
It returns `1` if the specified input belongs to `S` and `0` otherwise.
-/
def characteristic (S : Set α) (x : α) [Decidable (x ∈ S)] : Nat :=
if x ∈ S then 1 else 0
/-! ## Subsets -/
/--
Every `Set` is a subset of itself.
-/
theorem subset_self (S : Set α) : S ⊆ S := by
intro _ hs
exact hs
/--
If `Set` `A` is a subset of `Set` `B`, then `A B = B`.
-/
theorem left_subset_union_eq_self {A B : Set α} (h : A ⊆ B)
: A B = B := by
rw [Set.ext_iff]
intro x
apply Iff.intro
· intro hU
apply Or.elim hU
· intro hA
exact h hA
· simp
· intro hB
exact Or.inr hB
/--
If `Set` `B` is a subset of `Set` `A`, then `A B = B`.
-/
theorem right_subset_union_eq_self {A B : Set α} (h : B ⊆ A)
: A B = A := by
rw [Set.union_comm]
exact left_subset_union_eq_self h
/--
If `x` and `y` are members of `Set` `A`, it follows `{x, y}` is a subset of `A`.
-/
theorem mem_mem_imp_pair_subset {x y : α}
(hx : x ∈ A) (hy : y ∈ A) : ({x, y} : Set α) ⊆ A := by
intro a ha
apply Or.elim ha
· intro hx'
rwa [hx']
· intro hy'
rwa [hy']
/-! ## Powerset -/
/--
Every `Set` is a member of its own powerset.
-/
theorem self_mem_powerset_self {A : Set α}
: A ∈ 𝒫 A := subset_self A
/-! ## Symmetric Difference -/
/--
`x` is a member of the `symmDiff` of `A` and `B` **iff** `x ∈ A ∧ x ∉ B` or
`x ∉ A ∧ x ∈ B`.
-/
theorem mem_symm_diff_iff_exclusive_mem {A B : Set α}
: x ∈ (A ∆ B) ↔ (x ∈ A ∧ x ∉ B) (x ∉ A ∧ x ∈ B) := by
unfold symmDiff
apply Iff.intro
· intro hx
simp at hx
conv => arg 2; rw [and_comm]
exact hx
· intro hx
simp
conv => arg 2; rw [and_comm]
exact hx
/--
`x` is not a member of the `symmDiff` of `A` and `B` **iff** `x ∈ A ∩ B` or
`x ∉ A B`.
This is the contraposition of `mem_symm_diff_iff_exclusive_mem`.
-/
theorem not_mem_symm_diff_inter_or_not_union {A B : Set α}
: x ∉ (A ∆ B) ↔ (x ∈ A ∩ B) (x ∉ A B) := by
show ¬(x ∈ A ∧ ¬x ∈ B x ∈ B ∧ ¬x ∈ A) ↔ x ∈ A ∧ x ∈ B ¬(x ∈ A x ∈ B)
rw [
not_or_de_morgan,
not_and_de_morgan, not_and_de_morgan,
not_not, not_not,
not_or_de_morgan
]
apply Iff.intro
· intro nx
apply Or.elim nx.left
· intro nA
exact Or.elim nx.right (Or.inr ⟨nA, ·⟩) (absurd · nA)
· intro hB
exact Or.elim nx.right (absurd hB ·) (Or.inl ⟨·, hB⟩)
· intro hx
apply Or.elim hx
· intro hy
exact ⟨Or.inr hy.right, Or.inr hy.left⟩
· intro hy
exact ⟨Or.inl hy.left, Or.inl hy.right⟩
end Set