bookshelf/Bookshelf/Avigad/Chapter_5.lean

465 lines
10 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/-! # Avigad.Chapter5
Tactics
-/
/-! #### Exercise 1
Go back to the exercises in Chapter 3 and Chapter 4 and redo as many as you can
now with tactic proofs, using also `rw` and `simp` as appropriate.
-/
namespace Avigad.Chapter5
namespace ex1
/-! #### Exercises 3.1 -/
section ex3_1
variable (p q r : Prop)
-- Commutativity of ∧ and
theorem and_comm' : p ∧ q ↔ q ∧ p := by
apply Iff.intro
· intro ⟨hp, hq⟩
exact ⟨hq, hp⟩
· intro ⟨hq, hp⟩
exact ⟨hp, hq⟩
theorem or_comm' : p q ↔ q p := by
apply Iff.intro
· intro
| Or.inl hp => exact Or.inr hp
| Or.inr hq => exact Or.inl hq
· intro
| Or.inl hq => exact Or.inr hq
| Or.inr hp => exact Or.inl hp
-- Associativity of ∧ and
theorem and_assoc : (p ∧ q) ∧ r ↔ p ∧ (q ∧ r) := by
apply Iff.intro
· intro ⟨⟨hp, hq⟩, hr⟩
exact ⟨hp, hq, hr⟩
· intro ⟨hp, hq, hr⟩
exact ⟨⟨hp, hq⟩, hr⟩
theorem or_assoc' : (p q) r ↔ p (q r) := by
apply Iff.intro
· intro
| Or.inl (Or.inl hp) => exact Or.inl hp
| Or.inl (Or.inr hq) => exact Or.inr (Or.inl hq)
| Or.inr hr => exact Or.inr (Or.inr hr)
· intro
| Or.inl hp => exact Or.inl (Or.inl hp)
| Or.inr (Or.inl hq) => exact Or.inl (Or.inr hq)
| Or.inr (Or.inr hr) => exact Or.inr hr
-- Distributivity
theorem and_or_left : p ∧ (q r) ↔ (p ∧ q) (p ∧ r) := by
apply Iff.intro
· intro
| ⟨hp, Or.inl hq⟩ => exact Or.inl ⟨hp, hq⟩
| ⟨hp, Or.inr hr⟩ => exact Or.inr ⟨hp, hr⟩
· intro
| Or.inl ⟨hp, hq⟩ => exact ⟨hp, Or.inl hq⟩
| Or.inr ⟨hp, hr⟩ => exact ⟨hp, Or.inr hr⟩
theorem or_and_left : p (q ∧ r) ↔ (p q) ∧ (p r) := by
apply Iff.intro
· intro
| Or.inl hp => exact ⟨Or.inl hp, Or.inl hp⟩
| Or.inr ⟨hq, hr⟩ => exact ⟨Or.inr hq, Or.inr hr⟩
· intro
| ⟨Or.inl hp, _⟩ => exact Or.inl hp
| ⟨Or.inr _, Or.inl hp⟩ => exact Or.inl hp
| ⟨Or.inr hq, Or.inr hr⟩ => exact Or.inr ⟨hq, hr⟩
-- Other properties
theorem imp_imp_iff_and_imp : (p → (q → r)) ↔ (p ∧ q → r) := by
apply Iff.intro
· intro h ⟨hp, hq⟩
exact h hp hq
· intro h hp hq
exact h ⟨hp, hq⟩
theorem or_imp : ((p q) → r) ↔ (p → r) ∧ (q → r) := by
apply Iff.intro
· intro h
apply And.intro
· intro hp
exact h (Or.inl hp)
· intro hq
exact h (Or.inr hq)
· intro ⟨hpr, hqr⟩ h
apply Or.elim h
· intro hp
exact hpr hp
· intro hq
exact hqr hq
theorem nor_or : ¬(p q) ↔ ¬p ∧ ¬q := by
apply Iff.intro
· intro h
apply And.intro
· intro hp
exact h (Or.inl hp)
· intro hq
exact h (Or.inr hq)
· intro ⟨np, nq⟩
intro
| Or.inl hp => exact absurd hp np
| Or.inr hq => exact absurd hq nq
theorem not_and_or_mpr : ¬p ¬q → ¬(p ∧ q) := by
intro
| Or.inl np => intro h; exact absurd h.left np
| Or.inr nq => intro h; exact absurd h.right nq
theorem and_not_self : ¬(p ∧ ¬p) := by
intro ⟨hp, np⟩
exact absurd hp np
theorem not_imp_o_and_not : p ∧ ¬q → ¬(p → q) := by
intro ⟨hp, nq⟩ h
exact absurd (h hp) nq
theorem false_elim_self : ¬p → (p → q) := by
intro np hp
exact absurd hp np
theorem not_or_imp_imp : (¬p q) → (p → q) := by
intro
| Or.inl np => intro hp; exact absurd hp np
| Or.inr hq => exact fun _ => hq
theorem or_false_iff : p False ↔ p := by
apply Iff.intro
· intro
| Or.inl hp => exact hp
| Or.inr ff => exact False.elim ff
· intro hp
exact Or.inl hp
theorem and_false_iff : p ∧ False ↔ False := by
apply Iff.intro
· intro ⟨_, ff⟩
exact ff
· intro ff
exact False.elim ff
theorem imp_imp_not_imp_not : (p → q) → (¬q → ¬p) := by
intro hpq nq hp
exact absurd (hpq hp) nq
end ex3_1
/-! #### Exercises 3.2 -/
section ex3_2
open Classical
variable (p q r s : Prop)
theorem imp_or_mp (hp : p) : (p → r s) → ((p → r) (p → s)) := by
intro h
apply (h hp).elim
· intro hr
exact Or.inl (fun _ => hr)
· intro hs
exact Or.inr (fun _ => hs)
theorem not_and_iff_or_not : ¬(p ∧ q) → ¬p ¬q := by
intro h
apply (em p).elim
· intro hp
apply (em q).elim
· intro hq
exact False.elim (h ⟨hp, hq⟩)
· intro nq
exact Or.inr nq
· intro np
exact Or.inl np
theorem not_imp_mp : ¬(p → q) → p ∧ ¬q := by
intro h
apply And.intro
· apply byContradiction
intro np
apply h
intro hp
exact absurd hp np
· intro hq
apply h
intro _
exact hq
theorem not_or_of_imp : (p → q) → (¬p q) := by
intro hpq
apply (em p).elim
· intro hp
exact Or.inr (hpq hp)
· intro np
exact Or.inl np
theorem not_imp_not_imp_imp : (¬q → ¬p) → (p → q) := by
intro hqp hp
apply byContradiction
intro nq
exact absurd hp (hqp nq)
theorem or_not : p ¬p := by apply em
theorem imp_imp_imp : (((p → q) → p) → p) := by
intro h
apply (em p).elim
· intro hp
exact hp
· intro np
apply h
intro hp
exact absurd hp np
end ex3_2
/-! #### Exercises 3.3 -/
section ex3_3
variable (p : Prop)
theorem iff_not_self (hp : p) : ¬(p ↔ ¬p) := by
intro h
exact absurd hp (h.mp hp)
end ex3_3
/-! #### Exercises 4.1 -/
section ex4_1
variable (α : Type _)
variable (p q : α → Prop)
theorem forall_and : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x) := by
apply Iff.intro
· intro h
apply And.intro
· intro hx; exact And.left (h hx)
· intro hx; exact And.right (h hx)
· intro h hx
have lhs : ∀ (x : α), p x := And.left h
have rhs : ∀ (x : α), q x := And.right h
exact ⟨lhs hx, rhs hx⟩
theorem forall_imp_distrib : (∀ x, p x → q x) → (∀ x, p x) → (∀ x, q x) := by
intro h₁ h₂ hx
exact h₁ hx (h₂ hx)
theorem forall_or_distrib : (∀ x, p x) (∀ x, q x) → ∀ x, p x q x := by
intro
| Or.inl h => intro hx; exact Or.inl (h hx)
| Or.inr h => intro hx; exact Or.inr (h hx)
end ex4_1
/-! #### Exercises 4.2 -/
section ex4_2
variable (α : Type _)
variable (p q : α → Prop)
variable (r : Prop)
theorem self_imp_forall : α → ((∀ _ : α, r) ↔ r) := by
intro ha
apply Iff.intro
· intro har
apply har
exact ha
· intro hr _
exact hr
section
open Classical
theorem forall_or_right : (∀ x, p x r) ↔ (∀ x, p x) r := by
apply Iff.intro
· intro h
apply (em r).elim
· intro hr
exact Or.inr hr
· intro nr
apply Or.inl
· intro hx
apply (h hx).elim
· exact id
· intro hr
exact absurd hr nr
· intro h₁ hx
apply h₁.elim
· intro h₂
exact Or.inl (h₂ hx)
· intro hr
exact Or.inr hr
end
theorem forall_swap : (∀ x, r → p x) ↔ (r → ∀ x, p x) := by
apply Iff.intro
· intro h hr hx
exact h hx hr
· intro h hx hr
exact h hr hx
end ex4_2
/-! #### Exercises 4.3 -/
section ex4_3
open Classical
variable (men : Type _)
variable (barber : men)
variable (shaves : men → men → Prop)
theorem barber_paradox (h : ∀ x : men, shaves barber x ↔ ¬ shaves x x)
: False := by
apply (em (shaves barber barber)).elim
· intro hb
exact absurd hb ((h barber).mp hb)
· intro nb
exact absurd ((h barber).mpr nb) nb
end ex4_3
/-! #### Exercises 4.5 -/
section ex4_5
open Classical
variable (α : Type _)
variable (p q : α → Prop)
variable (r s : Prop)
theorem exists_imp : (∃ _ : α, r) → r := by
intro ⟨_, hr⟩
exact hr
theorem exists_intro (a : α) : r → (∃ _ : α, r) := by
intro hr
exact ⟨a, hr⟩
theorem exists_and_right : (∃ x, p x ∧ r) ↔ (∃ x, p x) ∧ r := by
apply Iff.intro
· intro ⟨hx, hp, hr⟩
exact ⟨⟨hx, hp⟩, hr⟩
· intro ⟨⟨hx, hp⟩, hr⟩
exact ⟨hx, hp, hr⟩
theorem exists_or : (∃ x, p x q x) ↔ (∃ x, p x) (∃ x, q x) := by
apply Iff.intro
· intro
| ⟨hx, Or.inl hp⟩ => exact Or.inl ⟨hx, hp⟩
| ⟨hx, Or.inr hq⟩ => exact Or.inr ⟨hx, hq⟩
· intro
| Or.inl ⟨hx, hp⟩ => exact ⟨hx, Or.inl hp⟩
| Or.inr ⟨hx, hq⟩ => exact ⟨hx, Or.inr hq⟩
theorem forall_iff_not_exists : (∀ x, p x) ↔ ¬(∃ x, ¬p x) := by
apply Iff.intro
· intro ha ⟨hx, np⟩
exact absurd (ha hx) np
· intro he hx
apply byContradiction
intro np
exact he ⟨hx, np⟩
theorem exists_iff_not_forall : (∃ x, p x) ↔ ¬(∀ x, ¬p x) := by
apply Iff.intro
· intro ⟨hx, hp⟩ h
exact absurd hp (h hx)
· intro h₁
apply byContradiction
intro h₂
apply h₁
intro hx hp
exact h₂ ⟨hx, hp⟩
theorem not_exists : (¬∃ x, p x) ↔ (∀ x, ¬p x) := by
apply Iff.intro
· intro h hx hp
exact h ⟨hx, hp⟩
· intro h ⟨hx, hp⟩
exact absurd hp (h hx)
theorem forall_negation : (¬∀ x, p x) ↔ (∃ x, ¬p x) := by
apply Iff.intro
· intro h₁
apply byContradiction
intro h₂
exact h₁ (fun (x : α) => by
apply byContradiction
intro np
exact h₂ ⟨x, np⟩)
· intro ⟨hx, np⟩ h
exact absurd (h hx) np
theorem not_forall : (¬∀ x, p x) ↔ (∃ x, ¬p x) := forall_negation α p
theorem forall_iff_exists_imp : (∀ x, p x → r) ↔ (∃ x, p x) → r := by
apply Iff.intro
· intro h ⟨hx, hp⟩
exact h hx hp
· intro h hx hp
exact h ⟨hx, hp⟩
theorem exists_iff_forall_imp (a : α) : (∃ x, p x → r) ↔ (∀ x, p x) → r := by
apply Iff.intro
· intro ⟨hx, hp⟩ h
apply hp
exact h hx
· intro h₁
apply (em (∀ x, p x)).elim
· intro h₂
exact ⟨a, fun _ => h₁ h₂⟩
· intro h₂
have ⟨hx, np⟩ : (∃ x, ¬p x) := (forall_negation α p).mp h₂
exact ⟨hx, fun hp => absurd hp np⟩
theorem exists_self_iff_self_exists (a : α)
: (∃ x, r → p x) ↔ (r → ∃ x, p x) := by
apply Iff.intro
· intro ⟨hx, h⟩ hr
exact ⟨hx, h hr⟩
· intro h
apply (em r).elim
· intro hr
have ⟨hx, hp⟩ := h hr
exact ⟨hx, fun _ => hp⟩
· intro nr
exact ⟨a, fun hr => absurd hr nr⟩
end ex4_5
end ex1
/-! ### Exercise 2
Use tactic combinators to obtain a one line proof of the following:
-/
namespace ex2
theorem or_and_or_and_or (p q r : Prop) (hp : p)
: (p q r) ∧ (q p r) ∧ (q r p) := by
simp [*]
end ex2
end Avigad.Chapter5