import Mathlib.Tactic.Ring /-- `n`-tuples are defined recursively as such: `⟨x₁, ..., xₙ⟩ = ⟨⟨x₁, ..., xₙ₋₁⟩, xₙ⟩` We allow empty tuples. For a `Tuple`-like type with opposite "endian", refer to `Mathlib.Data.Vector`. -/ inductive Tuple : (α : Type u) → (size : Nat) → Type u where | nil : Tuple α 0 | snoc : Tuple α n → α → Tuple α (n + 1) syntax (priority := high) "t[" term,* "]" : term macro_rules | `(t[]) => `(Tuple.nil) | `(t[$x]) => `(Tuple.snoc t[] $x) | `(t[$xs:term,*, $x]) => `(Tuple.snoc t[$xs,*] $x) namespace Tuple -- ======================================== -- Coercions -- ======================================== scoped instance : CoeOut (Tuple α (min (m + n) m)) (Tuple α m) where coe := cast (by simp) scoped instance : Coe (Tuple α 0) (Tuple α (min n 0)) where coe := cast (by rw [Nat.min_zero]) scoped instance : Coe (Tuple α 0) (Tuple α (min 0 n)) where coe := cast (by rw [Nat.zero_min]) scoped instance : Coe (Tuple α n) (Tuple α (min n n)) where coe := cast (by simp) scoped instance : Coe (Tuple α n) (Tuple α (0 + n)) where coe := cast (by simp) scoped instance : Coe (Tuple α (min m n + 1)) (Tuple α (min (m + 1) (n + 1))) where coe := cast (by rw [Nat.min_succ_succ]) scoped instance : Coe (Tuple α m) (Tuple α (min (m + n) m)) where coe := cast (by simp) -- ======================================== -- Equality -- ======================================== theorem eq_nil : @Tuple.nil α = t[] := rfl theorem eq_iff_singleton : (a = b) ↔ (t[a] = t[b]) := by apply Iff.intro · intro h; rw [h] · intro h; injection h theorem eq_iff_snoc {t₁ t₂ : Tuple α n} : (a = b ∧ t₁ = t₂) ↔ (snoc t₁ a = snoc t₂ b) := by apply Iff.intro · intro ⟨h₁, h₂ ⟩; rw [h₁, h₂] · intro h injection h with _ h₁ h₂ exact And.intro h₂ h₁ /-- Implements decidable equality for `Tuple α m`, provided `a` has decidable equality. -/ protected def hasDecEq [DecidableEq α] (t₁ t₂ : Tuple α n) : Decidable (Eq t₁ t₂) := match t₁, t₂ with | t[], t[] => isTrue eq_nil | snoc as a, snoc bs b => match Tuple.hasDecEq as bs with | isFalse np => isFalse (fun h => absurd (eq_iff_snoc.mpr h).right np) | isTrue hp => if hq : a = b then isTrue (eq_iff_snoc.mp $ And.intro hq hp) else isFalse (fun h => absurd (eq_iff_snoc.mpr h).left hq) instance [DecidableEq α] : DecidableEq (Tuple α n) := Tuple.hasDecEq -- ======================================== -- Basic API -- ======================================== /-- Returns the number of entries of the `Tuple`. -/ def size (_ : Tuple α n) : Nat := n /-- Returns all but the last entry of the `Tuple`. -/ def init : (t : Tuple α (n + 1)) → Tuple α n | snoc vs _ => vs /-- Returns the last entry of the `Tuple`. -/ def last : Tuple α (n + 1) → α | snoc _ v => v /-- Prepends an entry to the start of the `Tuple`. -/ def cons : Tuple α n → α → Tuple α (n + 1) | t[], a => t[a] | snoc ts t, a => snoc (cons ts a) t -- ======================================== -- Concatenation -- ======================================== /-- Join two `Tuple`s together end to end. -/ def concat : Tuple α m → Tuple α n → Tuple α (m + n) | is, t[] => is | is, snoc ts t => snoc (concat is ts) t /-- Concatenating a `Tuple` with `nil` yields the original `Tuple`. -/ theorem self_concat_nil_eq_self (t : Tuple α m) : concat t t[] = t := match t with | t[] => rfl | snoc _ _ => rfl /-- Concatenating `nil` with a `Tuple` yields the `Tuple`. -/ theorem nil_concat_self_eq_self (t : Tuple α m) : concat t[] t = t := by induction t with | nil => unfold concat; simp | @snoc n as a ih => unfold concat rw [ih] suffices HEq (snoc (cast (_ : Tuple α n = Tuple α (0 + n)) as) a) ↑(snoc as a) from eq_of_heq this have h₁ := Eq.recOn (motive := fun x h => HEq (snoc (cast (show Tuple α n = Tuple α x by rw [h]) as) a) (snoc as a)) (show n = 0 + n by simp) HEq.rfl exact Eq.recOn (motive := fun x h => HEq (snoc (cast (_ : Tuple α n = Tuple α (0 + n)) as) a) (cast h (snoc as a))) (show Tuple α (n + 1) = Tuple α (0 + (n + 1)) by simp) h₁ /-- Concatenating a `Tuple` to a nonempty `Tuple` moves `concat` calls closer to expression leaves. -/ theorem concat_snoc_snoc_concat {bs : Tuple α n} : concat as (snoc bs b) = snoc (concat as bs) b := rfl /-- `snoc` is equivalent to concatenating the `init` and `last` element together. -/ theorem snoc_eq_init_concat_last (as : Tuple α m) : snoc as a = concat as t[a] := by cases as with | nil => rfl | snoc _ _ => simp; unfold concat concat; rfl -- ======================================== -- Initial sequences -- ======================================== /-- Take the first `k` entries from the `Tuple` to form a new `Tuple`, or the entire `Tuple` if `k` exceeds the number of entries. -/ def take (t : Tuple α n) (k : Nat) : Tuple α (min n k) := if h : n ≤ k then cast (by rw [min_eq_left h]) t else match t with | t[] => t[] | @snoc _ n' as a => cast (by rw [min_lt_succ_eq h]) (take as k) where min_lt_succ_eq {m : Nat} (h : ¬m + 1 ≤ k) : min m k = min (m + 1) k := by have h' : k + 1 ≤ m + 1 := Nat.lt_of_not_le h simp at h' rw [min_eq_right h', min_eq_right (Nat.le_trans h' (Nat.le_succ m))] /-- Taking no entries from any `Tuple` should yield an empty one. -/ theorem self_take_zero_eq_nil (t : Tuple α n) : take t 0 = @nil α := by induction t with | nil => simp; rfl | snoc as a ih => unfold take; simp; rw [ih]; simp /-- Taking any number of entries from an empty `Tuple` should yield an empty one. -/ theorem nil_take_zero_eq_nil (k : Nat) : (take (@nil α) k) = @nil α := by cases k <;> (unfold take; simp) /-- Taking `n` entries from a `Tuple` of size `n` should yield the same `Tuple`. -/ theorem self_take_size_eq_self (t : Tuple α n) : take t n = t := by cases t with | nil => simp; rfl | snoc as a => unfold take; simp /-- Taking all but the last entry of a `Tuple` is the same result, regardless of the value of the last entry. -/ theorem take_subst_last {as : Tuple α n} (a₁ a₂ : α) : take (snoc as a₁) n = take (snoc as a₂) n := by unfold take simp /-- Taking `n` elements from a tuple of size `n + 1` is the same as invoking `init`. -/ theorem init_eq_take_pred (t : Tuple α (n + 1)) : take t n = init t := by cases t with | snoc as a => unfold init take simp rw [self_take_size_eq_self] simp /-- If two `Tuple`s are equal, then any initial sequences of those two `Tuple`s are also equal. -/ theorem eq_tuple_eq_take {t₁ t₂ : Tuple α n} : (t₁ = t₂) → (t₁.take k = t₂.take k) := by intro h rw [h] /-- Given a `Tuple` of size `k`, concatenating an arbitrary `Tuple` and taking `k` elements yields the original `Tuple`. -/ theorem eq_take_concat {t₁ : Tuple α m} {t₂ : Tuple α n} : take (concat t₁ t₂) m = t₁ := by induction t₂ with | nil => simp rw [self_concat_nil_eq_self, self_take_size_eq_self] | @snoc n' as a ih => simp rw [concat_snoc_snoc_concat] unfold take simp rw [ih] simp end Tuple